Dispersing Fermi-Ulam Models

Jacopo De Simoi - University of Toronto

joint work with
Dmitry Dolgopyat - UMD

The Dynamical Systems, Ergodic Theory, and Probability
conference dedicated to the memory of Nikolai Chernov

UAB 20-05-2015

Jacopo De Simoi Dispersing Fermi-Ulam Models 1/15



One-dimensional mechanical model



One-dimensional mechanical model

— Fixed
0 = £t +1) vl

—]Oscillating



Fermi-Ulam model

One-dimensional mechanical model

| Fixed
(w =+ ]

]Oscillating

Elastic collisions with the walls + free motion in between
Energy is not preserved at collisions
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Fermi-Ulam model

One-dimensional mechanical model

| Fixed
(w =+ ]

]Oscillating

Elastic collisions with the walls + free motion in between
Energy is not preserved at collisions

Goal: describe the long term energy distribution.
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Fermi-Ulam model

Conjecture (Fermi-Ulam'>7)

“One expects that, after sufficiently long times, the average velocity
of the point will become very large [...]. The tendency towards
equipartition of energy would imply this”
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Fermi-Ulam model

Conjecture (Fermi-Ulam'>7)

“One expects that, after sufficiently long times, the average velocity
of the point will become very large [...]. The tendency towards
equipartition of energy would imply this”

Theorem (Pustylnikov'983)

If €(t) is analytic, all trajectories have bounded energy
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Fermi-Ulam model

Conjecture (Fermi-Ulam'>7)

“One expects that, after sufficiently long times, the average velocity
of the point will become very large [...]. The tendency towards
equipartition of energy would imply this”

Theorem (Pustylnikov, Laederich-Levi, R. Douady'%%3)
IfL(t)€ C*F¢, all trajectories have bounded energy

KAM-type result (main ingredient: Moser’s small twist Theorem)

Theorem (Zharnitsky ')

There exist £(t) € C° so that some trajectories have unbounded energy
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Record data at every collision with the oscillating wall:

time of collision t

post-collisional velocity v
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Record data at every collision with the oscillating wall:

time of collision teR/Z

post-collisional velocity v > —0(t)



Record data at every collision with the oscillating wall:

time of collision teR/Z

post-collisional relative velocity w=uv+(t)>0



The collision map

Record data at every collision with the oscillating wall:

time of collision teR/Z
post-collisional relative velocity w=uv+6t)>0
M=TxR*" I (tmwn) = (tn-i-lawn—i-l)

[ is an exact twist map, fuw = w := wdt A dw [note [,, w = 0]
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The collision map

M=TxR" I (tnawn) = (tn-l-lawn-i-l)

f is an exact twist map, fi,w = w := wdt A dw [note wa = 00]:

F(tn, wn) = (tn + 6t (tn, wp), w + £(ty) — L(tni1)),
where for w > ||/||:

0(t) + €t + 5t(t, w))

St(t,w) = T

=0(w™)

for w — oo, f is close to integrable (t,w) + (t +w™!, w)
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Our general standing assumptions

Recall: £(?) is distance between the two walls .
(t) € CP[0,1] strictly positive, £(0) = £(1), £(0) # £(1).

A g(t)

Y
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Early results: asymptotic normal form

Define fundamental parameter [~ discontinuity]:

Ay = {6(0)/{)16(5)%5} : (2(0) —é(1))
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Early results: asymptotic normal form

Define fundamental parameter [~ discontinuity]:
1 . .
Ay = {5(0)/ 5(8)2d8:| : (5(0) - 5(1))
0

Theorem (— Dolgopyat®°'?)

There exists R ~ [0,1] x RT, R C M and coordinates (0,I)onR
with I ~ v such that the first return map I of f on R is a O5(I71)-
perturbation of F' : (0,1) — (0, 1) where

0 =60—1 mod 1 I=T+A00-1/2)
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The piecewise linear Standard Map |

=6—1 mod 1 IT=T+2006-1/2)
Fisa piecewise affine map: Tr dE =2 — A,
Corollary (of the Normal Form)

If Ay € (0,4) the dynamics of the FUM is asymptotically elliptic; the
dynamics can be described [up to O(I~1)] as a piecewise isometry.
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The piecewise linear Standard Map |

=61 mod 1 I=T1+2M0-1/2)

Fisa piecewise affine map: Tr dF =2— A,

Corollary (of the Normal Form)
If Ay € (0,4) the dynamics of the FUM is asymptotically elliptic; the
dynamics can be described [up to O(I~')] as a piecewise isometry.

Jacopo De Simoi Dispersing Fermi-Ulam Models 7/15



F'is a piecewise affine map: TrdF' = 2 — A,.



The piecewise linear Standard Map I

0=6—1 mod 1 I=T+A0-1/2)
Fisa piecewise affine map: Tr dF =2— A,
Theorem (Chernov'?%?)
If Ay & [0,4], then F is ergodic, mixing and has the K -property.
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The piecewise linear Standard Map I

0=6—1 mod 1 I=T+00-1/2)
Fisa piecewise affine map: Tr dF =2— A,

Theorem (Chernov'?%?)

If Ay & [0,4], then F is ergodic, mixing and has the K -property.

Corollary (of the Normal Form)

If Ay & [0, 4] the dynamics of the FUM is asymptotically hyperbolic
(i.e. 3 invariant cone fields for sufficiently large energies)

Moreover, let € = {(tg, wo) s.t. lim,_o0 Wy = 00}, then:
mes & =0 HD & = 2,

recurrence, stopped CLT...

Jacopo De Simoi Dispersing Fermi-Ulam Models 8/15



The piecewise linear Standard Map I

0=6—1 mod 1 I=T+00-1/2)
Fisa piecewise affine map: Tr dF =2— A,

Theorem (Chernov'?%?)

If Ay & [0,4], then F is ergodic, mixing and has the K -property.

Corollary (of the Normal Form)

If Ay & [0, 4] the dynamics of the FUM is asymptotically hyperbolic
(i.e. 3 invariant cone fields for sufficiently large energies)

Moreover, let € = {(tg, wo) s.t. lim,_o0 Wy = 00}, then:
mes & =0 HD & = 2,

recurrence, stopped CLT...

Jacopo De Simoi Dispersing Fermi-Ulam Models 8/15



Dispersing Fermi-Ulam models

Recall: £(t) is distance between the two walls
((t) € C°[0,1],£ >0, £(0) = £(1), £(0) # £(1)

A g(t)
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Dispersing Fermi-Ulam models

Recall: £(t) is distance between the two walls
((t) € C°[0,1],£ >0, £(0) = £(1), £(0) # £(1)

+ Convexity assumption: £ > k£ > 0

A g(t)
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Dispersing Fermi-Ulam models

Definition
A FUM is dispersing if { > x> 0 (in particular Ay < 0)

Theorem (— Dolgopyat®')

There exists a discrete set E s.t. if Ay € E, the dynamics f of a
dispersing FUM is ergodic.

e.g. the energy of a.e. trajectory can infinitely often be arbitrarily
large and arbitrarily small.
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Hints of the proof: hyperbolicity

Lemma

The dynamics f of a dispersing FUM is cone-hyperbolic, i.e

IS (x) C TyM st. DK (x) C Ky, Df 1K (2) C Koy

Proof: f preserves the positive cone in (suitable) Jacobi coords

NN

Jacopo De Simoi Dispersing Fermi-Ulam Models

O]

11/15



Hints of the proof: hyperbolicity

However:
D
min 1D fol, > 14 27(x)k/w
veke(a) lollp
where 7(z) is the flight time before the next collision and || - ||, is
the p-metric
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min 1D fol, > 14 27(x)k/w
veke(a) lollp
where 7(z) is the flight time before the next collision and || - ||, is
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Hyperbolicity is weak because 7(x) can be arbitrarily small due to:
o Large velocities

o Recollisions
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However:
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veke(a) lollp
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Hints of the proof: hyperbolicity

However:
D
min 1D fol, > 14 27(x)k/w
veke(a) lollp
where 7(z) is the flight time before the next collision and || - ||, is
the p-metric

Hyperbolicity is weak because 7(x) can be arbitrarily small due to:
o Large velocities
o Recollisions

Solution: induce on suitable M C M

Lemma

The induced map f:M—Mis uniformly hyperbolic.
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Hints of the proof: from hyperbolicity to ergodicity

Ergodicity = local ergodicity (via Hopf argument)

+ combinatorial information

Ingredients
o Growth Lemma
o Distortion bounds for the (un)stable manifolds

o Absolute continuity of (un)stable manifolds

Our system has infinite volume!
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Hints of the proof: the Growth Lemma

Unstable manifolds are expanded by hyperbolicity, but fragmented

by singularities

S
__——’//// e //,:j—
—
e <
— o=
Wu fwu f2wu

Growth Lemma

Let [, (z) = | c.c. of fPW 3 fMz|: if n > C|log |W||,

Pyw(ln(z) <€) < Ce
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Hints of the proof: the Growth Lemma

Growth Lemma

Let [, (z) = | c.c. of fPW S fMz|: if n > C|log |W||,

Pw(ln(z) <e) < Ce

Proof of Growth Lemma [usually] relies on sub-exponential local
complexity bounds.
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billiards with corner points and oo horizon)

Jacopo De Simoi Dispersing Fermi-Ulam Models 13/15



Hints of the proof: the Growth Lemma

Growth Lemma

Let [, (z) = | c.c. of fPW S fMz|: if n > C|log |W||,

Pw(ln(z) <e) < Ce

Proof of Growth Lemma [usually] relies on sub-exponential local
complexity bounds. Not readily available results (e.g. not known for
billiards with corner points and oo horizon)

Theorem (—-P.1. Toth?013)

Growth Lemma for planar billiards with corner points, finite horizon

Note: our proof does not provide bounds on total complexity.
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Hints of the proof: the Growth Lemma

Growth Lemma
Let l,,(z) = | c.c. of fPW S fMz|: if n > C|log |W||,

Pw(l,(z) <e) < Ce

Proof of Growth Lemma [usually] relies on sub-exponential local
complexity bounds. Not readily available results (e.g. not known for
billiards with corner points and oo horizon)

Theorem (—:P.1. Toth213WIP)

Growth Lemma for planar billiards with corner points, infinite horizon

Note: our proof does not provide bounds on total complexity.
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Hints of the proof: the Growth Lemma I

Fact

Subexponential complexity bounds on compact sets and at infinity (i.e.
for the normal form) does not necessarily imply the Growth Lemma
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Hints of the proof: the Growth Lemma I

Fact

Subexponential complexity bounds on compact sets and at infinity (i.e.
for the normal form) does not necessarily imply the Growth Lemma

Additional assumption
Bounded complexity for the normal form (holds for A, ¢ E)

= Growth Lemma
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Thank youl!



