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Kolya and Chaotic Billiards

Kolya was a recognized leader in the field of chaotic billiards
• developed (jointly with Sinai) a standard approach to proving
ergodicity in hyperbolic systems with singularities

• obtained (with various collaborators) a detailed
description of statistical properties of dispersing bil-
liards
• put a lot of effort in simplifying and generalizing
original proofs
• a book Chaotic billiards of Chernov and Markar-
ian gives an overview of the field and explains key
ideas and techniques

Kolya’s legacy in dynamics and mathematical physics
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Chernov-Sinai approach to ergodicity of systems with
singularities (1987)

Synopsis (based on Kolya’s 1993 paper).
Setting: systems with singularities have non-zero Lyapunov
exponents almost everywhere.
Eu,E s -stable and unstable (Oseledec) subspaces.
Adapted metric:

||DT (v)|| ≥ ||v || if v ∈ Eu, ||DT−1(v)|| ≥ ||v || if v ∈ E s .

x is u-essential if ∀Λ ∃V 3 x and n > 0 :

||dT n(v)|| ≥ Λ||v || for all y ∈ V , v ∈ Eu(y).

x is s-essential if it is u-essential for T−1.
x̄ is sufficient if there is x = T k x̄ , V 3 x , Λ > 1 and n > 0 : in V

||dT n(v)|| ≥ Λ||v ||, ||dT n(u)|| ≤ Λ−1||u||, v ∈ Eu(y), u ∈ E s(y).

Kolya’s legacy in dynamics and mathematical physics
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Chernov-Sinai conditions

1. Double singularites have codimension at least 2

2. Oseledec decomposition is continuous at sufficient points

3. Small neighbourhood of singularities has small measure

4. (Ansatz) Almost all points on singularities are essential

5. Singularities are transversal to stable and unstable manifolds
almost everywhere

Theorem Properties (1)-(5) imply local ergodicity near sufficient
points.

I Separates difficulties comping from zero exponetns
(insuffciency) and singularites

I Based on finitely verifable conditions

Kolya’s legacy in dynamics and mathematical physics
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Chernov-Sinai conditions

1. Double singularites have codimension at least 2

2. Oseledec decomposition is continuous at sufficient points

3. Small neighbourhood of singularities has small measure

4. (Ansatz) Almost all points on singularities are essential

5. Singularities are transversal to stable and unstable manifolds
almost everywhere

Theorem Properties (1)-(5) imply local ergodicity near sufficient
points.

Moreover each ergodic component E = E0 ∪ E1 ∪ Em−1 where
T : Ej → Ej+1 mod 1 and (Tm,E ) is a K -system.

Chernov–Haskell (1996): (Tm,E ) is a Bernoulli.

Kolya’s legacy in dynamics and mathematical physics
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Chernov-Sinai (1987) results

In the context of hard sphere gas sufficiency means rich collision
combinatorcs.
(I) Three discs on T2 : global ergodicity in high density regime.

(II) Arbitrary many discs on T2 : local ergodicity on positive
(large?) measure set in a low density regime.
(III+) Many applications to systems with elastic collisions (new
results at this conference).

Kolya’s legacy in dynamics and mathematical physics



Billairds
Beyond billiards.

Mathematical physics.

Chernov-Sinai Theory beyond billiards

Setting: There is a well defined set C where hyperbolicity fails.
E.g.: In billiards, invariant manifolds are fractured near
singularities.
Key idea: If most points on the trajectory of C are hyperbolic
then one can recover lost hyperbolicity having good stochastic
properties for almost all orbits.
Examples

I Maps with critical points (where the map is not a local
diffeomorphism)

I Maps with homoclinic tangencies

Question. Present a version of Chernov-Sinai theory where the
continuity of Oseledec decomposition is replaced by a weaker
condition.

Kolya’s legacy in dynamics and mathematical physics
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Work of Bunimovich-Chernov-Sinai on dispersing billiards

A large class of dispersive billiards is considered including finite and
infinite horizon gas and billiards with corners.

I Suitable sympolic dynamics is constucted
I Stretched exponential decay of correlations are proven
I Central Limit Theorem is obtained
I Introduced a lot of technical tools including Markov sieves

A (n,N)-Markov sieve with n ∼ Nγ for γ < 1 is a partition
M =

⋃I
i=0 Ai such that

I diam(Ai ) < e−n for i > 0
I mes(A0) ≤ Ne−n

I The process in(x) where T nx ∈ Ain is well approximated by
Markov process if T nx 6∈ A0

I The set A1 . . .AI enjoys good mixing properties (e.g. Doeblin
condition) at scale n.

Kolya’s legacy in dynamics and mathematical physics
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Applications of Markov sieves

I Bunimovich-Chernov-Sinai (1991) proved that (n,N) sieves
exist for all N and deduced stretched exponential mixing and
CLT

I the same program realized by Chernov for contact Anosov
flows (1998) and billiard flows (2007)

I slow-fast system (e.g. the work of Chernov and Dolgopyat on
Brownian Motion (2009))

I finite time chaos

Kolya’s legacy in dynamics and mathematical physics
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Mixing rates in billiards

• Young (1998): exponetial mixing for finite horizon Lorentz gas
• Chernov (1999): exponetial mixing for infinite horizon Lorentz
gas
Let ∆n be the displacement of the Lorentz particle between n-th
and n + 1-st collision. Note that E(|∆0|2) =∞.
Lemma (Chernov-Dolgopyat (2009)) |E(∆0∆n)| ≤ Kθn for n > 0.
• Chernov (1999): exponential mixing for billiards with corners
(under complexity assumption removed by de Simoi-Toth (2014))
A key role is played by an n-step expansion estimate∑

components of T nW

λ−1i ≤ η < 1

emphasized by Kolya.

Kolya’s legacy in dynamics and mathematical physics
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Slowly mixing billiards.

• In many semidispersing and defocusing billiards the mixing due
to slow divergence of nearby trajectories.

• A general approach to slowly mixing systems was proposed by
Young based on Young tower with well controlled return time.
• If the set where hyperbolicity fails is complicated it is often
difficult to obtain sharp bounds on the tail of return time.

Kolya’s legacy in dynamics and mathematical physics



Billairds
Beyond billiards.

Mathematical physics.

Slowly mixing billiards.

• In many semidispersing and defocusing billiards the mixing due
to slow divergence of nearby trajectories.

• A general approach to slowly mixing systems was proposed by
Young based on Young tower with well controlled return time.

• If the set where hyperbolicity fails is complicated it is often
difficult to obtain sharp bounds on the tail of return time.

Kolya’s legacy in dynamics and mathematical physics



Billairds
Beyond billiards.

Mathematical physics.

Slowly mixing billiards.

• In many semidispersing and defocusing billiards the mixing due
to slow divergence of nearby trajectories.

• A general approach to slowly mixing systems was proposed by
Young based on Young tower with well controlled return time.
• If the set where hyperbolicity fails is complicated it is often
difficult to obtain sharp bounds on the tail of return time.

Kolya’s legacy in dynamics and mathematical physics



Billairds
Beyond billiards.

Mathematical physics.

Slowly mixing billiards.

Markarian (2004) developed and Chernov-Zhang (2005–2008)
refined the following procedure

1. Find a subset M ⊂M such that an induced map has good
mixing properties: (e.g. Young tower with exponentially
decaying return times)

2. Study the return time τ from M to M

3. Relate the properties of τ and the induced map TM to the
mixing properties of the original map T .

Kolya’s legacy in dynamics and mathematical physics
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Slowly mixing billiards.

Chernov-Zhang obtained optimal polynomial bounds for many
clasiscal examples inluding Bunimovich stadia, billiards with cusps,
rectangular billiards with holes, flowers etc.

Kolya’s legacy in dynamics and mathematical physics
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Mixing-1.

Chernov (1992) proves exponential mixing for piecewise linear toral
automorphisms.

Method: Renewal Theory.
Since the map is piecewise linear the Lebesgue measure induces a
Markov measure for the symbolic system, so renewal theory for
Markov chains could be used.

Later developments: operator valued renewal theory by Sarig
(2002), Gouezel (2004) . . .
Current research deals with infinite measures systems, flows etc.

One approach to proving renewal theorems is via Tauberian
theorems for Fourier transform. In dynamics, transfer operators are
needed (cf. Young (1998)).

Kolya’s legacy in dynamics and mathematical physics
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Mixing-2.

In 1999 paper Kolya proved mixing for a wide class of
multidimensional hyperbolic systems with singularities including
piecewise linear maps.

Important new ingredient: controlling the sizes of invariant
manifolds in high dimesnions.

Currently relations between distribution of sizes of Pesin manifolds
and ergodic and mixing properties of the system is an active area
of research.

Some contributors:
Alves, Bonatti, Viana, Burns, Dolgopyat, Pesin, Climenhaga . . .

Kolya’s legacy in dynamics and mathematical physics
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Mixing-3 (flows).

Phase space of a hyperbolic flows locally is a section with
hyperbolic map × flow direction. Mixing inside the section was
well understood.
Kolya’s insight: Contact structure could be used to effectively
control mixing in flow direction.

t(A)− t(E ) =

∫ A

E
λ =

∫
ABCDE

λ

=

∫
BCDE

dλ+

∫
ABE

dλ = Area(BCDE ).

Using Markov sieves Kolya proved stretched exponential bounds for
geodesic flows (1998) and billiard flows (2007)

Kolya’s legacy in dynamics and mathematical physics
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Mixing-3 (flows).

Kolya’s insight: Contact structure could be used to effectively
control mixing in flow direction.

t(A)− t(E ) =

∫ A

E
λ =

∫
ABCDE

λ

=

∫
BCDE

dλ+

∫
ABE

dλ = Area(BCDE ).

Using Markov sieves Kolya proved stretched exponential bounds for
geodesic flows (1998) and billiard flows (2007)

Currently there are sophisticated methods to exploit Kolya’s insight
including exotic spaces constructed by Liverani, Tsujii, Faure,
Sjostrand . . . There are very precise results on contact Anosov
flows (exponential mixing, location of resonances etc).

Question: Non-contact flows?
Kolya’s legacy in dynamics and mathematical physics
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Anosov diffeomorphisms with holes

Motivation: Open billiards.

Question: Describe the measure and distribution of the set of
orbits which do not exit the system after n collisions.

Chernov-Markarian-Troubetzkoy (1997-1998) studied Anosov
diffeos on T2 with holes.

In previous works Pianigiani-Yorke (1979), Lopes-Markarian (1996)
the surviving set had a simple Cantor structure.

The result: For small hole size the authors construct conditionally
invariant SRB measures

T∗µu = λuµu.

λu controls the measure of the surviving set and µu controls its
distribution.

Kolya’s legacy in dynamics and mathematical physics
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Anosov diffeomorphisms with holes

Question: Describe the measure and distribution of the set of
orbits which do not exit the system after n collisions.

Chernov-Markarian-Troubetzkoy (1997-1998) studied Anosov
diffeos on T2 with holes.
The result: For small hole size the authors construct conditionally
invariant SRB measures T∗µu = λuµu.
λu controls the measure, µu controls the distribution.

Currently-an active area of research. Some papers:
Bunimovich-Dettmann
Bunimovich-Yurchenko
Demers-Wright-Young
Dyatlov-Guillarmou
Dolgopyat-Nandori . . .

Question: Open billiards
Kolya’s legacy in dynamics and mathematical physics
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Ohm’s Law for Lorentz gas.

Theorem (Bunimovich-Chernov-Sinai

(1991)) q(t)√
t
⇒ N (0,D2).

Thermostated Lorentz gas:
q̈ = E − 〈q̇,E〉|q̇|2 q̇.

Theorem (Chernov-Eyink-Lebowitz-Sinai (1993))

lim
t→∞

q(t)

t
= J(E ) where

J(E ) = CE + o(|E |) Ohm’s Law and

C =
1

2
D2 Einstein relation

Kolya’s legacy in dynamics and mathematical physics
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Ohm’s Law for Lorentz gas.

Theorem (Chernov-Eyink-Lebowitz-Sinai (1993))

lim
t→∞

q(t)

t
= J(E ) where J(E ) =

1

2
D2E + o(|E |).

J(E ) =
∫

∆dµE where ∆ is free path vector and µE is the
physical measure.

For uniformly hyperbolic systems physical measure is weakly
smooth ((Katok-Knieper-Pollicott-Weiss (1989))

J(E ) is beleived to be non-smooth in general for E 6= 0
(Bonetto-Daems-Lebowitz (1999))

Key feature: µ0 is smooth.

Kolya’s legacy in dynamics and mathematical physics
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Smoothness of physical measures.

µE (A)− µ0(A) = lim
N→∞

[
µ0(A(f NE x))− µ0(A(x))

]
=

lim
N→∞

N−1∑
k=0

[
µ0(A(f k+1

E x))− µ0(A(f kE x))
]
.

µ0(A(f kE x)) = µ0(A(f kE f0x)) = µ0A(f k+1
E δ−1E x)

=

∫
A(f k+1

E y)
dµ0(x)

dµ0(y)
dµ0(y)

where fE = f0δEx , y = δ−1E x .

If µ0 is not smooth, then the last change of variables is singular
unless one allows a mistake in the stable direction, so the situation
is much more complicated and there are many open problems.

Kolya’s legacy in dynamics and mathematical physics
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Einstein relation.

Theorem (Chernov-Eyink-Lebowitz-Sinai (1993))

lim
t→∞

q(t)

t
= J(E ) where J(E ) =

1

2
D2E + o(|E |).

Consider Lorentz gas without thermostate:

q̈ = εE ,
|q̇|2

2
− ε〈q,E 〉 = H.

It is a slow-fast system where the slow variable is kinetic energy
and fast variables form thermostatted Lorentz gas.

(Chernov-Dolgopyat (2009)) derive Einstein relation from scaling
properties of the system (scaling time↔ scaling velocity and force)
and invariance of the Lioville measure for the full system.

Kolya’s legacy in dynamics and mathematical physics
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Lorentz gas summury

Finite horizon:

Free motion: (Bunimovich-Chernov-Sinai (1991))
q(t)√

t
⇒ N (0,D2).

Field with thermostate: (Chernov-Eyink-Lebowitz-Sinai (1993))
q(t)
t → J(E ) where J(E ) = 1

2D
2E + o(|E |)

Field w/o theremostate: (Chernov-D. (2009)) 〈q(t),E〉
3/2

t ⇒ Γ
(
2
3

)
Infinite horizon:

Free motion: (Szasz-Varju (2007)) q(t)√
t ln t
⇒ N (0,D2).

Field with thermostate: (Chernov-Dolgopyat (2009))
q(t)
t → J(E ) where J(E ) = | lnE |

2 D2E + O(|E |).

Field without theremostate: ???
Kolya’s legacy in dynamics and mathematical physics
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Two particle model of Brownian Motion

Consider 2 particles P and p moving in a dispersing domain D in
T2 and collidong elastically with the walls and with each others.

size mass init. velocity init. position
P r M � 1 0 fixed
p 0 1 1 random

Theorem (Chernov-Dolgopyat (2009))
(a) As M →∞ (Q(τM2/3),M2/3V (τM2/3)⇒ (Q,V)(τ) where

dQ = Vdτ, dV = σ(Q)dW (τ).

(b) As r → 0 we have σ2(Q) = 8r
3Area(D) + o(r).

Kolya’s legacy in dynamics and mathematical physics
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Conclusion.

I Kolya played a major role in converting the theory of chaotic
billiards from a new mathematical field to the state where
realisitic physical models can be analyzed mathematically.

I Kolya’s contributions go far beyond billiards. Many standard
tools in dynamics go back to his papers.

I Several directions started by Kolya remain active areas of
research. Selected open problems are

I Statistical properties of hard ball systems
I Effective equations for many-particle systems
I Mixing rates for hyperbolic flows and other systems with

symmetries . . .

Kolya’s departure is a great loss to the mathematical
community.

Kolya’s legacy in dynamics and mathematical physics



Billairds
Beyond billiards.

Mathematical physics.

Conclusion.

I Kolya played a major role in converting the theory of chaotic
billiards from a new mathematical field to the state where
realisitic physical models can be analyzed mathematically.

I Kolya’s contributions go far beyond billiards. Many standard
tools in dynamics go back to his papers.

I Several directions started by Kolya remain active areas of
research. Selected open problems are

I Statistical properties of hard ball systems
I Effective equations for many-particle systems
I Mixing rates for hyperbolic flows and other systems with

symmetries . . .

Kolya’s departure is a great loss to the mathematical
community.

Kolya’s legacy in dynamics and mathematical physics


	Billairds
	Beyond billiards.
	Mathematical physics.

