Slow-fast systems

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Kolya Chernov, 1956-2014

part II, 1995-2014 (UAB years)

Slow-fast systems

Flows

Growth Lemmas

Slow-fast systems

The result

Markov approximations and decay of correlations for Anosov flows, Annals of Math. 1998

- Φ^t : M → M geodesic flow on compact surface of variable negative curvature
- *C_{F,G}(t)* correlation w.r.t. volume for *F*, *G* (generalized) Hölder
- stretched exponential bound: $|C_{F,G}(t)| \le v(F,G)e^{-a\sqrt{t}}$
- First dynamical proof on mixing rates
- Previously only for constant negative curvature (representation theory)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Some ingredients

In fact, more general:

- dim(M) = 3, $\Phi^t : M \rightarrow M$ top. mixing Anosov, μ SRB
- satisfying UNI (covers contact case)
- UNI \implies abundance of H-frames
- H-frames ⇒ effective estimates on the mixing rates of a Markov chain approximating the flow
- Non-optimality: Markov approximation

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Influence

D. Dolgopyat: On decay of correlations in Anosov flows, Annals of Math. 1998

- exponential mixing
- combination of Chernov's geometrical ideas with thermodynamic formalism

many more...

N. Chernov: A stretched exponential bound on time correlations for billiard flows, JSP, 2007

(ロ) (同) (三) (三) (三) (○) (○)

Young towers

- mid-90's Holy Grail: EDC for 2D dispersing billiard maps
 - "Expansion prevails fractioning"
 - how to quantify ? how to implement?
- L.-S. Young: Statistical properties of dynamical systems with some hyperbolicity, Annals of Math., 1998
 - generalized horseshoe with Markov returns
 - 2D "singular Anosov"
 - 2D FH dispersing billiards, no corner points
- Kolya's contribution:
 - JSP 1992: piecewise linear hyperbolic
 - DCDS 1999: HD "singular Anosov"
 - JSP 1999: 2D IH dispersing billiards, billiards with corner points

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Z function

W (local) u-manifold, m_w normalized Lebesgue on W

$$\mathcal{Z}_{W} = \sup_{\varepsilon > 0} \varepsilon^{-1} m_{W}(x : d(x, \partial W) < \varepsilon)$$

- can be generalized to countable collections
- measures the average "size" and "shape" of the components

Growth Lemma:

$$\mathcal{Z}_{TW} \le \alpha \mathcal{Z}_W + \beta$$

for some $\alpha \in (0, 1)$ and $\beta > 0$.

Further applications

- Sinai billiards with small external forces (AHP 2001, 2008)
- Polynomial rates
 - stadia and alike (with Zhang, 2005-2008)
 - cusps (with Markarian, CMP 2007)
- An even more fortunate implementation: Coupling of standard pairs (with Dolgopyat, 2005)
- (Standard and Non-standard) limit laws, transport coefficients
 - infinite horizon with field (with Dolgopyat, RMS 2009, AHP 2010)
 - cusps (with Bálint and Dolgopyat, CMP 2011)
- Multidimensional billiards (with Bálint, Szász and Tóth, Asterisque 2002, AHP 2003)
- the book Chaotic billiards, AMS 2006 (with Markarian)

Flows

Brownian Brownian motion I

- Collaboration with Dima Dolgopyat
- Fast variable: chaotic billiard
- Randomness: only from the initial conditions
- Obtain SDE for Slow variable (after rescaling)

Memoirs AMS 2009

 $m = 1 \ll M$ on the time scale $M^{-2/3}$: $dV = \sigma_Q(f) dW$

・ロト・西ト・西ト・日下 ひゃぐ

Galton board

Physical Review Letters 2007, Journal of AMS 2009

acceleration vs. frequent collisions

- slow variable: kinetic energy K;
- K^{3/2} converges to square Bessel process of dimension 4/3
- $v(t) \sim t^{1/3}$, $x(t) \sim t^{2/3}$, limit distributions
- recurrence

Slow-fast systems

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Memorial site

http://nikolai-chernov.last-memories.com/

Thank you for your attention.