DYNAMICAL BOREL-CANTELLI LEMMAS

Dmitry Kleinbock and Nikolai Chernov

1999-2015

DYNAMICAL BORELCANTELLI

Motivation 1: Borel-Cantelli Lemma

DYNAMICAL BORELCANTELLI

Motivation 1: Borel-Cantelli Lemma

Given a probability space (X, μ), a sequence of subsets A_{k} of X and $x \in X$, look at the number of sets A_{k} that contain x :

$$
S_{\infty}(x) \stackrel{\text { def }}{=} \#\left\{k \in \mathbb{N} \mid x \in A_{k}\right\}=\sum_{k=1}^{\infty} 1_{A_{k}}(x)
$$

Motivation 1: Borel-Cantelli Lemma

$$
S_{\infty}(x) \stackrel{\text { def }}{=} \#\left\{k \in \mathbb{N} \mid x \in A_{k}\right\}=\sum_{k=1}^{\infty} 1_{A_{k}}(x)
$$

(i) If $\sum \mu\left(A_{k}\right)<\infty$, then $S_{\infty}(x) \underset{\text { a.e. }}{<\infty}$, i.e. almost every point $x \in X$ belongs to finitely many A_{k}.

Motivation 1: Borel-Cantelli Lemma

Given a probability space (X, μ), a sequence of subsets A_{k} of X and $x \in X$, look at the number of sets A_{k} that contain x :

$$
S_{\infty}(x) \stackrel{\text { def }}{=} \#\left\{k \in \mathbb{N} \mid x \in A_{k}\right\}=\sum_{k=1}^{\infty} 1_{A_{k}}(x)
$$

(i) If $\sum \mu\left(A_{k}\right)<\infty$, then $S_{\infty}(x)<\infty$ a.e. i.e. almost every point $x \in X$ belongs to finitely many A_{k}.
(ii) If $\sum \mu\left(A_{k}\right)=\infty$ and \underline{A}_{k} are independent, then $S_{\infty}(x)=\infty$ a.e.

Motivation 1: Borel-Cantelli Lemma

Given a probability space (X, μ), a sequence of subsets A_{k} of X and $x \in X$, look at the number of sets A_{k} that contain x :

$$
S_{\infty}(x) \stackrel{\text { def }}{=} \#\left\{k \in \mathbb{N} \mid x \in A_{k}\right\}=\sum_{k=1}^{\infty} 1_{A_{k}}(x)
$$

(i) If $\sum \mu\left(A_{k}\right)<\infty$, then $S_{\infty}(x)<\infty$ a.e. , i.e. almost every point $x \in X$ belongs to finitely many A_{k}.
(ii) If $\sum \mu\left(A_{k}\right)=\infty$ and \underline{A}_{k} are independent, then $S_{\infty}(x)=\infty$ a.e. i.e. almost every point $x \in X$ belongs to infinitely many A_{k}. Furthermore,

$$
\frac{S_{N}(x)}{E_{N}} \underset{\text { a.e. }}{\rightarrow} 1 \text { as } N \rightarrow \infty
$$

Motivation 1: Borel-Cantelli Lemma

Given a probability space (X, μ), a sequence of subsets A_{k} of X and $x \in X$, look at the number of sets A_{k} that contain x :

$$
S_{\infty}(x) \stackrel{\text { def }}{=} \#\left\{k \in \mathbb{N} \mid x \in A_{k}\right\}=\sum_{k=1}^{\infty} 1_{A_{k}}(x)
$$

(i) If $\sum \mu\left(A_{k}\right)<\infty$, then $S_{\infty}(x)<\infty$ a.e. i.e. almost every point $x \in X$ belongs to finitely many A_{k}.
(ii) If $\sum \mu\left(A_{k}\right)=\infty$ and \underline{A}_{k} are independent, then $S_{\infty}(x)=\infty$ a.e. i.e. almost every point $x \in X$ belongs to infinitely many A_{k}. Furthermore,

$$
\frac{S_{N}(x)}{E_{N}} \underset{\text { a.e. }}{\rightarrow} 1 \text { as } N \rightarrow \infty
$$

Here $S_{N}(x) \stackrel{\text { def }}{=} \#\left\{1 \leq k \leq N \mid x \in A_{k}\right\}=\sum_{k=1}^{N} 1_{A_{k}}(x)$
and $E_{N} \stackrel{\text { def }}{=} \sum_{k=1}^{N} \mu\left(A_{k}\right)=E\left[S_{N}\right]$.

Motivation 2: Birkhoff's Theorem

DYNAMICAL BORELCANTELLI

Motivation 2: Birkhoff's Theorem

DYNAMICAL BORELCANTELLI

$$
T:(X, \mu) \circlearrowleft \text { ergodic }
$$

Motivation

Motivation 2: Birkhoff's Theorem

DYNAMICAL BOREL-
CANTELLI
LEMMAS
Kleinbock and
Chernov
$\forall B \subset X$ with $\mu(B)>0$, define $A_{k} \stackrel{\text { def }}{=} T^{-k}(B)$; then

Motivation 2: Birkhoff's Theorem

DYNAMICAL BORELCANTELLI

$$
T:(X, \mu) \circlearrowleft \text { ergodic }
$$

§
$\forall B \subset X$ with $\mu(B)>0$, define $A_{k} \stackrel{\text { def }}{=} T^{-k}(B)$; then

$$
\frac{S_{N}(x)}{E_{N}}=\frac{\#\left\{1 \leq k \leq N \mid T^{k} x \in B\right\}}{N \mu(B)} \rightarrow \underset{\text { a.e. }}{\rightarrow} 1 \text { as } N \rightarrow \infty
$$

Motivation 2: Birkhoff's Theorem

DYNAMICAL BORELCANTELLI

$$
T:(X, \mu) \circlearrowleft \text { ergodic }
$$

§
$\forall B \subset X$ with $\mu(B)>0$, define $A_{k} \stackrel{\text { def }}{=} T^{-k}(B)$; then

$$
\frac{S_{N}(x)}{E_{N}}=\frac{\#\left\{1 \leq k \leq N \mid T^{k} x \in B\right\}}{N \mu(B)} \underset{\text { a.e. }}{\rightarrow} 1 \text { as } N \rightarrow \infty
$$

\Uparrow

$$
S_{\infty}(x)=\#\left\{k \in \mathbb{N} \mid T^{k} x \in B\right\}_{\text {a.e. }}=\infty
$$

Motivation 3: an early shrinking target theorem

DYNAMICAL BORELCANTELLI

Motivation 3: an early shrinking target theorem
[Philipp 1969]: Take $T:[0,1] \circlearrowleft$ given by

Motivation 3: an early shrinking target theorem

[Philipp 1969]: Take $T:[0,1] \circlearrowleft$ given by

- $T(x)=\beta x(\bmod 1)$ with $\beta>1$,

Motivation 3: an early shrinking target theorem

DYNAMICAL BORELCANTELLI LEMMAS

Kleinbock and Chernov
[Philipp 1969]: Take $T:[0,1] \circlearrowleft$ given by

- $T(x)=\beta x(\bmod 1)$ with $\beta>1$, or
- $T(x)=\{1 / x\}$ (the Gauss transformation),

Motivation 3: an early shrinking target theorem

[Philipp 1969]: Take $T:[0,1] \circlearrowleft$ given by

- $T(x)=\beta x(\bmod 1)$ with $\beta>1$, or
- $T(x)=\{1 / x\}$ (the Gauss transformation),
and let μ be the unique T-invariant smooth measure on $[0,1]$.

Motivation 3: an early shrinking target theorem

[Philipp 1969]: Take $T:[0,1] \circlearrowleft$ given by

- $T(x)=\beta x(\bmod 1)$ with $\beta>1$, or
- $T(x)=\{1 / x\}$ (the Gauss transformation),
and let μ be the unique T-invariant smooth measure on $[0,1]$.
Take any sequence of subintervals $\left\{B_{k}\right\}$ of $[0,1]$ with $\sum \mu\left(B_{k}\right)=\infty$, and let $A_{k} \stackrel{\text { def }}{=} T^{-k}\left(B_{k}\right)$.

Motivation 3: an early shrinking target theorem

[Philipp 1969]: Take $T:[0,1] \circlearrowleft$ given by

- $T(x)=\beta x(\bmod 1)$ with $\beta>1$, or
- $T(x)=\{1 / x\}$ (the Gauss transformation),
and let μ be the unique T-invariant smooth measure on $[0,1]$.
Take any sequence of subintervals $\left\{B_{k}\right\}$ of $[0,1]$ with $\sum \mu\left(B_{k}\right)=\infty$, and let $A_{k} \stackrel{\text { def }}{=} T^{-k}\left(B_{k}\right)$. Then

$$
\frac{S_{N}(x)}{E_{N}} \underset{\text { a.e. }}{\rightarrow} 1 \text { as } N \rightarrow \infty .
$$

Motivation 3: an early shrinking target theorem

[Philipp 1969]: Take $T:[0,1] \circlearrowleft$ given by

- $T(x)=\beta x(\bmod 1)$ with $\beta>1$, or
- $T(x)=\{1 / x\}$ (the Gauss transformation),
and let μ be the unique T-invariant smooth measure on $[0,1]$.
Take any sequence of subintervals $\left\{B_{k}\right\}$ of $[0,1]$ with $\sum \mu\left(B_{k}\right)=\infty$, and let $A_{k} \stackrel{\text { def }}{=} T^{-k}\left(B_{k}\right)$. Then

$$
\frac{S_{N}(x)}{E_{N}} \underset{\text { a.e. }}{\rightarrow} 1 \text { as } N \rightarrow \infty .
$$

This, in particular, gives the optimal rate of approximation of arbitrary point of $[0,1]$ by orbit points $T^{k} x$ for a.e. $x \in[0,1]$.

Motivation 4: the Khintchine-Groshev-Schmidt Theorem

DYNAMICAL BORELCANTELLI

Motivation 4: the Khintchine-Groshev-Schmidt Theorem

Let m, n be positive integers and $\psi: \mathbb{N} \rightarrow \mathbb{R}_{+}$non-increasing.

Motivation 4: the Khintchine-Groshev-Schmidt Theorem

Let m, n be positive integers and $\psi: \mathbb{N} \rightarrow \mathbb{R}_{+}$non-increasing. Define

$$
A_{k}=\left\{\begin{array}{l|l}
Y \in[0,1]^{m \times n} & \begin{array}{l}
\|Y \mathbf{q}+\mathbf{p}\| \leq \psi(\|\mathbf{q}\|) \\
\text { for some } \mathbf{p} \in \mathbb{Z}^{m} \text { and } \\
\mathbf{q} \in \mathbb{Z}^{n} \text { with }\|\mathbf{q}\|=k
\end{array}
\end{array}\right\},
$$

Motivation 4: the Khintchine-Groshev-Schmidt Theorem

Let m, n be positive integers and $\psi: \mathbb{N} \rightarrow \mathbb{R}_{+}$non-increasing. Define

$$
A_{k}=\left\{\begin{array}{l|l}
Y \in[0,1]^{m \times n} & \begin{array}{l}
\|Y \mathbf{q}+\mathbf{p}\| \leq \psi(\|\mathbf{q}\|) \\
\text { for some } \mathbf{p} \in \mathbb{Z}^{m} \text { and } \\
\mathbf{q} \in \mathbb{Z}^{n} \text { with }\|\mathbf{q}\|=k
\end{array}
\end{array}\right\},
$$

and assume that

$$
\sum_{k=1}^{\infty} k^{m-1} \psi^{n}(k) \asymp E_{\infty}=\infty .
$$

Motivation 4: the Khintchine-Groshev-Schmidt Theorem

Let m, n be positive integers and $\psi: \mathbb{N} \rightarrow \mathbb{R}_{+}$non-increasing. Define

$$
A_{k}=\left\{\begin{array}{l|l}
Y \in[0,1]^{m \times n} & \begin{array}{l}
\|Y \mathbf{q}+\mathbf{p}\| \leq \psi(\|\mathbf{q}\|) \\
\text { for some } \mathbf{p} \in \mathbb{Z}^{m} \text { and } \\
\mathbf{q} \in \mathbb{Z}^{n} \text { with }\|\mathbf{q}\|=k
\end{array}
\end{array}\right\},
$$

and assume that

$$
\sum_{k=1}^{\infty} k^{m-1} \psi^{n}(k) \asymp E_{\infty}=\infty .
$$

Then

$$
\frac{S_{N}(x)}{E_{N}} \underset{\text { a.e. }}{\rightarrow} 1 \text { as } N \rightarrow \infty .
$$

Motivation 4: the Khintchine-Groshev-Schmidt Theorem

Let m, n be positive integers and $\psi: \mathbb{N} \rightarrow \mathbb{R}_{+}$non-increasing. Define

$$
A_{k}=\left\{\begin{array}{l|l}
Y \in[0,1]^{m \times n} & \begin{array}{l}
\|Y \mathbf{q}+\mathbf{p}\| \leq \psi(\|\mathbf{q}\|) \\
\text { for some } \mathbf{p} \in \mathbb{Z}^{m} \text { and } \\
\mathbf{q} \in \mathbb{Z}^{n} \text { with }\|\mathbf{q}\|=k
\end{array}
\end{array}\right\},
$$

and assume that

$$
\sum_{k=1}^{\infty} k^{m-1} \psi^{n}(k) \asymp E_{\infty}=\infty .
$$

Then

$$
\frac{S_{N}(x)}{E_{N}} \underset{\text { a.e. }}{\rightarrow} 1 \text { as } N \rightarrow \infty .
$$

In particular, almost every Y lies in infinitely many A_{k}.

Even though in the above theorem the sets A_{k} are not in the form $T^{-k} B_{k}$, in [K-Margulis 1999] it was explained, following an earlier work of [Sullivan 1982] and [Dani 1985], how the set-up of the previous slide is related to certain flows on the homogeneous space of unimodular lattices in \mathbb{R}^{m+n}.

Even though in the above theorem the sets A_{k} are not in the form $T^{-k} B_{k}$, in [K-Margulis 1999] it was explained, following an earlier work of [Sullivan 1982] and [Dani 1985], how the set-up of the previous slide is related to certain flows on the homogeneous space of unimodular lattices in \mathbb{R}^{m+n}.

Following that work, we met with Kolya and started thinking about what else could be done...

Definition

DYNAMICAL BORELCANTELLI

Shrinking
targets
Use of mixing
Topological
Markov chains
Further work

Definition

DYNAMICAL BORELCANTELLI

Borel-Cantelli sequences

Shrinking
targets
Use of mixing
Topological
Markov chains

Definition

DYNAMICAL BOREL-
CANTELLI
LEMMAS
Kleinbock and Chernov

Definition

 subsets B_{k} of X is a$$
\text { Borel-Cantelli }(\mathrm{BC}) \text { sequence (relative to } T \text {) }
$$

if for μ-a.e. $x \in X$ there are infinitely many k such that $T^{k} x \in B_{k}$;

Motivation

Borel-Cantelli sequences

Definition

 subsets B_{k} of X is aBorel-Cantelli (BC) sequence (relative to T)
if for μ-a.e. $x \in X$ there are infinitely many k such that $T^{k} x \in B_{k}$; in other words, if $S_{\infty}(x) \underset{\text { a.e. }}{=} \infty$, where

$$
S_{\infty}(x) \stackrel{\text { def }}{=} \#\left\{k \in \mathbb{N} \mid T^{k} x \in B_{k}\right\}=\sum_{n=1}^{\infty} 1_{A_{k}}(x), A_{k}=T^{-k} B_{k}
$$

Definition

 subsets B_{k} of X is aBorel-Cantelli (BC) sequence (relative to T)
if for μ-a.e. $x \in X$ there are infinitely many k such that $T^{k} x \in B_{k}$; in other words, if $S_{\infty}(x)=\infty$ a.e. where

$$
S_{\infty}(x) \stackrel{\text { def }}{=} \#\left\{k \in \mathbb{N} \mid T^{k} x \in B_{k}\right\}=\sum_{n=1}^{\infty} 1_{A_{k}}(x), A_{k}=T^{-k} B_{k}
$$

Also say that $\left\{B_{k}\right\}$ is a strongly Borel-Cantelli (sBC) sequence (relative to T)

Definition

 subsets B_{k} of X is aBorel-Cantelli (BC) sequence (relative to T)
if for μ-a.e. $x \in X$ there are infinitely many k such that $T^{k} x \in B_{k}$; in other words, if $S_{\infty}(x)=\infty$ a.e. where

$$
S_{\infty}(x) \stackrel{\text { def }}{=} \#\left\{k \in \mathbb{N} \mid T^{k} x \in B_{k}\right\}=\sum_{n=1}^{\infty} 1_{A_{k}}(x), A_{k}=T^{-k} B_{k}
$$

Also say that $\left\{B_{k}\right\}$ is a strongly Borel-Cantelli (sBC) sequence (relative to T) if

$$
\frac{S_{N}(x)}{E_{N}} \underset{\text { a.e. }}{\rightarrow} 1 \text { as } N \rightarrow \infty
$$

where S_{N} and E_{N} are defined as before,

Definition

 subsets B_{k} of X is aBorel-Cantelli (BC) sequence (relative to T)
Borel-Cantelli sequences
if for μ-a.e. $x \in X$ there are infinitely many k such that $T^{k} x \in B_{k}$; in other words, if $S_{\infty}(x)=\infty$ a.e. where

$$
S_{\infty}(x) \stackrel{\text { def }}{=} \#\left\{k \in \mathbb{N} \mid T^{k} x \in B_{k}\right\}=\sum_{n=1}^{\infty} 1_{A_{k}}(x), A_{k}=T^{-k} B_{k}
$$

Also say that $\left\{B_{k}\right\}$ is a strongly Borel-Cantelli (sBC) sequence (relative to T) if

$$
\frac{S_{N}(x)}{E_{N}} \underset{\text { a.e. }}{\rightarrow} 1 \text { as } N \rightarrow \infty
$$

where S_{N} and E_{N} are defined as before, (A necessary condition: $E_{\infty}=\infty$, will always assume that.)

What is this notion good for?

DYNAMICAL BORELCANTELLI

Ergodicity Criterion: by Birkhoff's Theorem, T is ergodic

What is this notion good for?

Ergodicity Criterion: by Birkhoff's Theorem, T is ergodic

DYNAMICAL BOREL-
CANTELLI
every constant sequence $B_{k} \equiv B, \mu(B)>0$, is BC

Borel-Cantelli sequences

What is this notion good for?

Ergodicity Criterion: by Birkhoff's Theorem, T is ergodic
every constant sequence $B_{k} \equiv B, \mu(B)>0$, is BC
॥
every such sequence is $s B C$.

What is this notion good for?

Ergodicity Criterion: by Birkhoff's Theorem, T is ergodic
every constant sequence $B_{k} \equiv B, \mu(B)>0$, is BC
॥
every such sequence is sBC .

Weak Mixing Criterion [Chernov-K 2001]: T is weakly mixing

What is this notion good for?

Ergodicity Criterion: by Birkhoff's Theorem, T is ergodic

॥
 every constant sequence $B_{k} \equiv B, \mu(B)>0$, is BC

\Uparrow
every such sequence is $s B C$.

Weak Mixing Criterion [Chernov-K 2001]: T is weakly mixing

every sequence $\left\{B_{k}\right\}$ that contains only finitely many distinct sets, none of them of measure zero, is $B C$.

Proof. Choose $\left\{B_{k}\right\}$ from F_{1}, \ldots, F_{ℓ};

DYNAMICAL BORELCANTELLI

Proof. Choose $\left\{B_{k}\right\}$ from F_{1}, \ldots, F_{ℓ}; by weak mixing, $\forall i, j$

$$
\sum_{k=1}^{N}\left|\mu\left(T^{-k} F_{i} \cap F_{j}\right)-\mu\left(F_{i}\right) \mu\left(F_{j}\right)\right|=o(N)
$$

DYNAMICAL BORELCANTELLI LEMMAS

Kleinbock and Chernov

Borel-Cantelli sequences

Shrinking
targets
Hse of mixing
Topological
Markov chains

Proof. Choose $\left\{B_{k}\right\}$ from F_{1}, \ldots, F_{ℓ}; by weak mixing, $\forall i, j$

$$
\begin{gathered}
\sum_{k=1}^{N}\left|\mu\left(T^{-k} F_{i} \cap F_{j}\right)-\mu\left(F_{i}\right) \mu\left(F_{j}\right)\right|=o(N) \\
\Downarrow \\
E\left[\left(S_{N}-E_{N}\right)^{2}\right] \leq 2 \sum_{k=1}^{N} \sum_{\ell=k}^{N}\left(\mu\left(T^{-(\ell-k)} B_{\ell} \cap B_{k}\right)-\mu\left(B_{s}\right) \mu\left(B_{r}\right)\right) \\
=o\left(N^{2}\right) \quad \text { and } E_{N} \asymp N
\end{gathered}
$$

DYNAMICAL BORELCANTELLI LEMMAS

Kleinbock and Chernov

```
Borel-Cantelli
``` sequences

Proof. Choose \(\left\{B_{k}\right\}\) from \(F_{1}, \ldots, F_{\ell}\); by weak mixing, \(\forall i, j\)
\[
\begin{gathered}
\sum_{k=1}^{N}\left|\mu\left(T^{-k} F_{i} \cap F_{j}\right)-\mu\left(F_{i}\right) \mu\left(F_{j}\right)\right|=o(N) \\
\Downarrow\left[\left(S_{N}-E_{N}\right)^{2}\right] \leq 2 \sum_{k=1}^{N} \sum_{\ell=k}^{N}\left(\mu\left(T^{-(\ell-k)} B_{\ell} \cap B_{k}\right)-\mu\left(B_{s}\right) \mu\left(B_{r}\right)\right) \\
=o\left(N^{2}\right) \quad \text { and } E_{N} \asymp N \\
E\left[\left(\frac{S_{N}}{E_{N}}-1\right)^{2}\right] \rightarrow 0 \quad \text { as } N \rightarrow \infty
\end{gathered}
\]

DYNAMICAL BORELCANTELLI LEMMAS

Kleinbock and Chernov

Borel-Cantelli sequences

Proof. Choose \(\left\{B_{k}\right\}\) from \(F_{1}, \ldots, F_{\ell}\); by weak mixing, \(\forall i, j\)
\[
\begin{gathered}
\sum_{k=1}^{N}\left|\mu\left(T^{-k} F_{i} \cap F_{j}\right)-\mu\left(F_{i}\right) \mu\left(F_{j}\right)\right|=o(N) \\
\Downarrow\left[\left(S_{N}-E_{N}\right)^{2}\right] \leq 2 \sum_{k=1}^{N} \sum_{\ell=k}^{N}\left(\mu\left(T^{-(\ell-k)} B_{\ell} \cap B_{k}\right)-\mu\left(B_{s}\right) \mu\left(B_{r}\right)\right) \\
=o\left(N^{2}\right) \quad \text { and } E_{N} \asymp N \\
E\left[\left(\frac{S_{N}}{E_{N}}-1\right)^{2}\right] \rightarrow 0 \quad \text { as } N \rightarrow \infty \\
\Downarrow
\end{gathered}
\]

BOREL-
CANTELLI
LEMMAS
Kleinbock and Chernov

Borel-Cantelli sequences
for some subsequence \(\left\{N_{k}\right\}, S_{N_{k}} / E_{N_{k}} \rightarrow 1 \Rightarrow S_{\infty}=\infty\) a.e. \(=\infty\).

Proof. Choose \(\left\{B_{k}\right\}\) from \(F_{1}, \ldots, F_{\ell}\); by weak mixing, \(\forall i, j\)
\[
\begin{gathered}
\sum_{k=1}^{N}\left|\mu\left(T^{-k} F_{i} \cap F_{j}\right)-\mu\left(F_{i}\right) \mu\left(F_{j}\right)\right|=o(N) \\
\Downarrow\left[\left(S_{N}-E_{N}\right)^{2}\right] \leq 2 \sum_{k=1}^{N} \sum_{\ell=k}^{N}\left(\mu\left(T^{-(\ell-k)} B_{\ell} \cap B_{k}\right)-\mu\left(B_{s}\right) \mu\left(B_{r}\right)\right) \\
=o\left(N^{2}\right) \quad \text { and } E_{N} \asymp N \\
E\left[\left(\frac{S_{N}}{E_{N}}-1\right)^{2}\right] \rightarrow 0 \quad \text { as } N \rightarrow \infty \\
\Downarrow
\end{gathered}
\]
for some subsequence \(\left\{N_{k}\right\}, S_{N_{k}} / E_{N_{k} \text { a.e. }} 1 \Rightarrow S_{\infty}=\infty\) a.e.
Converse - by looking at irrational rotations.

\section*{There are always non- \(B C\) sequences:}

DYNAMICAL BORELCANTELLI

\section*{There are always non- BC sequences:}

Proposition [Chernov-K 2001]. If \(\mu\) is non-atomic, then for any \(\mu\)-preserving transformation \(T\) of \(X\) there exists a sequence \(\left\{B_{k}\right\}\) with \(E_{\infty}=\infty\) and \(S_{\infty}<\infty\) a.e. hence not \(B C\).

\section*{There are always non- BC sequences:}

Proposition [Chernov-K 2001]. If \(\mu\) is non-atomic, then for any \(\mu\)-preserving transformation \(T\) of \(X\) there exists a sequence \(\left\{B_{k}\right\}\) with \(E_{\infty}=\infty\) and \(S_{\infty}<\infty\) a.e. hence not BC .

Proof. Start with \(\left\{A_{n}\right\}\) with convergent some of measures, then derive.

\section*{There are always non-BC sequences:}

Proposition [Chernov-K 2001]. If \(\mu\) is non-atomic, then for any \(\mu\)-preserving transformation \(T\) of \(X\) there exists a sequence \(\left\{B_{k}\right\}\) with \(E_{\infty}=\infty\) and \(S_{\infty}<\infty\) a.e. hence not \(B C\).

Proof. Start with \(\left\{A_{n}\right\}\) with convergent some of measures, then derive.

Therefore to prove BC or sBC properties for certain classes of sequences (containing infinitely many distinct sets) it is necessary to impose certain restrictions on the sets \(B_{k}\).

\section*{A natural restriction:}

DYNAMICAL BORELCANTELLI

\section*{A natural restriction:}

DYNAMICAL BOREL-
CANTELLI
LEMMAS
Kleinbock
and
Chernov
for a metric space \(X\) (e.g. a Riemannian manifold)

Borel-Cantelli sequences

Shrinking targets

\section*{A natural restriction:}

DYNAMICAL BOREL-
CANTELLI
LEMMAS
Kleinbock
and
Chernov
for a metric space \(X\) (e.g. a Riemannian manifold)
and some \(T: X \circlearrowleft\),

\section*{A natural restriction:}
for a metric space \(X\) (e.g. a Riemannian manifold)
and some \(T: X \circlearrowleft\), one can try to prove that all sequences of balls in \(X\) are BC or sBC

\section*{A natural restriction:}
for a metric space \(X\) (e.g. a Riemannian manifold)
and some \(T: X \circlearrowleft\), one can try to prove that
all sequences of balls in \(X\) are BC or sBC
If this is the case, one can take any \(x_{0} \in X\) and consider what could be called
"a target shrinking to \(x_{0}\) "

\section*{A natural restriction:}
for a metric space \(X\) (e.g. a Riemannian manifold) and some \(T: X \circlearrowleft\), one can try to prove that
all sequences of balls in \(X\) are BC or sBC
If this is the case, one can take any \(x_{0} \in X\) and consider what could be called
"a target shrinking to \(x_{0}\) "
i.e. a sequence of balls \(B_{k}=B\left(x_{0}, r_{k}\right)\) with \(r_{k} \rightarrow 0\).

\section*{A natural restriction:}
for a metric space \(X\) (e.g. a Riemannian manifold) and some \(T: X \circlearrowleft\), one can try to prove that
all sequences of balls in \(X\) are BC or sBC
If this is the case, one can take any \(x_{0} \in X\) and consider what could be called
\[
\text { "a target shrinking to } x_{0} \text { " }
\]
i.e. a sequence of balls \(B_{k}=B\left(x_{0}, r_{k}\right)\) with \(r_{k} \rightarrow 0\).

Then almost all orbits \(\left\{T^{k} x\right\}\) will get into infinitely many such balls whenever \(r_{k}\) decays slowly enough \(\Rightarrow\) a quantitative strengthening of density of almost all orbits (in other words, all points \(x_{0} \in X\) can be "well approximated" by orbit points \(T^{k} x\) for almost all \(x\)).

\section*{A natural restriction:}
for a metric space \(X\) (e.g. a Riemannian manifold) and some \(T: X \circlearrowleft\), one can try to prove that
all sequences of balls in \(X\) are BC or sBC
If this is the case, one can take any \(x_{0} \in X\) and consider what could be called
\[
\text { "a target shrinking to } x_{0} \text { " }
\]
i.e. a sequence of balls \(B_{k}=B\left(x_{0}, r_{k}\right)\) with \(r_{k} \rightarrow 0\).

Then almost all orbits \(\left\{T^{k} x\right\}\) will get into infinitely many such balls whenever \(r_{k}\) decays slowly enough \(\Rightarrow\) a quantitative strengthening of density of almost all orbits (in other words, all points \(x_{0} \in X\) can be "well approximated" by orbit points \(T^{k} x\) for almost all \(x\)).
(Variants: sequences of neighborhoods of other sets; under an additional assumption of \(E_{N}\) diverging fast enough).

Tool: quasi-independence of translates \(T^{-k} B_{k}\) and \(T^{-\ell} B_{\ell}\)

Kleinbock
and
Chernov

Tool: quasi-independence of translates \(T^{-k} B_{k}\) and \(T^{-\ell} B_{\ell}\)
DYNAMICAL BORELCANTELLI LEMMAS

Kleinbock and Chernov
Lemma [?-Cassels-Schmidt-Sprindăuk] Assume that
\[
\begin{equation*}
\exists C>0: \quad E\left[\left(S_{M, N}-E_{M, N}\right)^{2}\right] \leq C \cdot E_{M, N} \text { for all } N \geq M \geq 1 \tag{1}
\end{equation*}
\]

Tool: quasi-independence of translates \(T^{-k} B_{k}\) and \(T^{-\ell} B_{\ell}\)
DYNAMICAL BORELCANTELLI LEMMAS

Kleinbock and Chernov
Lemma [?-Cassels-Schmidt-Sprindăuk] Assume that
\[
\begin{equation*}
\exists C>0: \quad E\left[\left(S_{M, N}-E_{M, N}\right)^{2}\right] \leq C \cdot E_{M, N} \text { for all } N \geq M \geq 1 \tag{1}
\end{equation*}
\]
(Here, as before, \(A_{k}=T^{-k} B_{k}\), and also

Tool: quasi-independence of translates \(T^{-k} B_{k}\) and \(T^{-\ell} B_{\ell}\) for large \(|k-\ell|\).

Lemma [?-Cassels-Schmidt-Sprindǎuk] Assume that
\[
\begin{equation*}
\exists C>0: \quad E\left[\left(S_{M, N}-E_{M, N}\right)^{2}\right] \leq C \cdot E_{M, N} \text { for all } N \geq M \geq 1 \tag{1}
\end{equation*}
\]
(Here, as before, \(A_{k}=T^{-k} B_{k}\), and also
\(S_{M, N}(x) \stackrel{\text { def }}{=} \#\left\{M+1 \leq k \leq N \mid x \in A_{k}\right\}=\sum_{k=M+1}^{N} 1_{A_{k}}(x)\),
\(\left.E_{M, N} \stackrel{\text { def }}{=} \sum_{k=M+1}^{N} \mu\left(A_{k}\right)=E\left[S_{M, N}\right].\right)\)

DYNAMICAL

Tool: quasi-independence of translates \(T^{-k} B_{k}\) and \(T^{-\ell} B_{\ell}\) for large \(|k-\ell|\).

Lemma [?-Cassels-Schmidt-Sprindăuk] Assume that
\[
\begin{equation*}
\exists C>0: \quad E\left[\left(S_{M, N}-E_{M, N}\right)^{2}\right] \leq C \cdot E_{M, N} \text { for all } N \geq M \geq 1 \tag{1}
\end{equation*}
\]
(Here, as before, \(A_{k}=T^{-k} B_{k}\), and also
\(S_{M, N}(x) \stackrel{\text { def }}{=} \#\left\{M+1 \leq k \leq N \mid x \in A_{k}\right\}=\sum_{k=M+1}^{N} 1_{A_{k}}(x)\),
\(\left.E_{M, N} \stackrel{\text { def }}{=} \sum_{k=M+1}^{N} \mu\left(A_{k}\right)=E\left[S_{M, N}\right].\right)\)
Then \(\forall \varepsilon>0\)
\[
\begin{equation*}
S_{N}=E_{\mathrm{a} . \mathrm{e} .}+O\left(E_{N}^{1 / 2} \log ^{3 / 2+\varepsilon} E_{N}\right) \tag{2}
\end{equation*}
\]

Tool: quasi-independence of translates \(T^{-k} B_{k}\) and \(T^{-\ell} B_{\ell}\) for large \(|k-\ell|\).

Lemma [?-Cassels-Schmidt-Sprindǎuk] Assume that
\[
\begin{equation*}
\exists C>0: \quad E\left[\left(S_{M, N}-E_{M, N}\right)^{2}\right] \leq C \cdot E_{M, N} \text { for all } N \geq M \geq 1 \tag{1}
\end{equation*}
\]
(Here, as before, \(A_{k}=T^{-k} B_{k}\), and also
\(S_{M, N}(x) \stackrel{\text { def }}{=} \#\left\{M+1 \leq k \leq N \mid x \in A_{k}\right\}=\sum_{k=M+1}^{N} 1_{A_{k}}(x)\),
\(\left.E_{M, N} \stackrel{\text { def }}{=} \sum_{k=M+1}^{N} \mu\left(A_{k}\right)=E\left[S_{M, N}\right].\right)\)
Then \(\forall \varepsilon>0\)
\[
\begin{equation*}
S_{N}=E_{N}+O\left(E_{N}^{1 / 2} \log ^{3 / 2+\varepsilon} E_{N}\right) \tag{2}
\end{equation*}
\]

In particular (assuming \(\left.E_{\infty}=\infty\right)\left\{B_{k}\right\}\) is an sBC sequence.

Tool: quasi-independence of translates \(T^{-k} B_{k}\) and \(T^{-\ell} B_{\ell}\) for large \(|k-\ell|\).

Lemma [?-Cassels-Schmidt-Sprindǎuk] Assume that
\[
\begin{equation*}
\exists C>0: \quad E\left[\left(S_{M, N}-E_{M, N}\right)^{2}\right] \leq C \cdot E_{M, N} \text { for all } N \geq M \geq 1 \tag{1}
\end{equation*}
\]
(Here, as before, \(A_{k}=T^{-k} B_{k}\), and also
\(S_{M, N}(x) \stackrel{\text { def }}{=} \#\left\{M+1 \leq k \leq N \mid x \in A_{k}\right\}=\sum_{k=M+1}^{N} 1_{A_{k}}(x)\),
\(\left.E_{M, N} \stackrel{\text { def }}{=} \sum_{k=M+1}^{N} \mu\left(A_{k}\right)=E\left[S_{M, N}\right].\right)\)
Then \(\forall \varepsilon>0\)
\[
\begin{equation*}
S_{N}=E_{\mathrm{a} . \mathrm{e} .}+O\left(E_{N}^{1 / 2} \log ^{3 / 2+\varepsilon} E_{N}\right) \tag{2}
\end{equation*}
\]

In particular (assuming \(\left.E_{\infty}=\infty\right)\left\{B_{k}\right\}\) is an sBC sequence.
Proof. Chebyshev's Inequality and a carefully arranged subdivision of \(\{1, \ldots, N\}\).

The inequality in the above lemma can often be derived from the decay of correlations of the dynamical system. Indeed,

The inequality in the above lemma can often be derived from the decay of correlations of the dynamical system. Indeed, one has
\[
E\left[\left(S_{M, N}-E_{M, N}\right)^{2}\right]=\sum_{k, \ell=M+1}^{N} E\left[\left(1_{A_{k}}-\mu\left(A_{k}\right)\right)\left(1_{A_{\ell}}-\mu\left(A_{\ell}\right)\right)\right]
\]

The inequality in the above lemma can often be derived from the decay of correlations of the dynamical system. Indeed, one has
\[
\begin{gathered}
E\left[\left(S_{M, N}-E_{M, N}\right)^{2}\right]=\sum_{k, \ell=M+1}^{N} E\left[\left(1_{A_{k}}-\mu\left(A_{k}\right)\right)\left(1_{A_{\ell}}-\mu\left(A_{\ell}\right)\right)\right] \\
\quad \leq 2 \sum_{\ell=M+1}^{N} \sum_{k=\ell}^{N}\left(\mu\left(T^{-(k-\ell)} B_{k} \cap B_{\ell}\right)-\mu\left(B_{k}\right) \mu\left(B_{\ell}\right) .\right)
\end{gathered}
\]

The inequality in the above lemma can often be derived from the decay of correlations of the dynamical system. Indeed, one has
\[
\begin{gathered}
E\left[\left(S_{M, N}-E_{M, N}\right)^{2}\right]=\sum_{k, \ell=M+1}^{N} E\left[\left(1_{A_{k}}-\mu\left(A_{k}\right)\right)\left(1_{A_{\ell}}-\mu\left(A_{\ell}\right)\right)\right] \\
\quad \leq 2 \sum_{\ell=M+1}^{N} \sum_{k=\ell}^{N}\left(\mu\left(T^{-(k-\ell)} B_{k} \cap B_{\ell}\right)-\mu\left(B_{k}\right) \mu\left(B_{\ell}\right) .\right)
\end{gathered}
\]

Hence if the system is mixing with fast enough rate, there is a hope of verifying its shrinking target properties.

The inequality in the above lemma can often be derived from the decay of correlations of the dynamical system. Indeed, one has
\[
\begin{gathered}
E\left[\left(S_{M, N}-E_{M, N}\right)^{2}\right]=\sum_{k, \ell=M+1}^{N} E\left[\left(1_{A_{k}}-\mu\left(A_{k}\right)\right)\left(1_{A_{\ell}}-\mu\left(A_{\ell}\right)\right)\right] \\
\quad \leq 2 \sum_{\ell=M+1}^{N} \sum_{k=\ell}^{N}\left(\mu\left(T^{-(k-\ell)} B_{k} \cap B_{\ell}\right)-\mu\left(B_{k}\right) \mu\left(B_{\ell}\right) .\right)
\end{gathered}
\]

Hence if the system is mixing with fast enough rate, there is a hope of verifying its shrinking target properties. This was the logic behind the papers of Philipp, Sullivan, K-Margulis.

The inequality in the above lemma can often be derived from the decay of correlations of the dynamical system. Indeed, one has
\[
\begin{gathered}
E\left[\left(S_{M, N}-E_{M, N}\right)^{2}\right]=\sum_{k, \ell=M+1}^{N} E\left[\left(1_{A_{k}}-\mu\left(A_{k}\right)\right)\left(1_{A_{\ell}}-\mu\left(A_{\ell}\right)\right)\right] \\
\quad \leq 2 \sum_{\ell=M+1}^{N} \sum_{k=\ell}^{N}\left(\mu\left(T^{-(k-\ell)} B_{k} \cap B_{\ell}\right)-\mu\left(B_{k}\right) \mu\left(B_{\ell}\right) .\right)
\end{gathered}
\]

Hence if the system is mixing with fast enough rate, there is a hope of verifying its shrinking target properties. This was the logic behind the papers of Philipp, Sullivan, K-Margulis.

So when Kolya visited Rutgers in 1999, I approached him, as an expert on decay of correlations, and suggested to explore this theme together for some other dynamical systems.

The inequality in the above lemma can often be derived from the decay of correlations of the dynamical system. Indeed, one has
\[
\begin{gathered}
E\left[\left(S_{M, N}-E_{M, N}\right)^{2}\right]=\sum_{k, \ell=M+1}^{N} E\left[\left(1_{A_{k}}-\mu\left(A_{k}\right)\right)\left(1_{A_{\ell}}-\mu\left(A_{\ell}\right)\right)\right] \\
\quad \leq 2 \sum_{\ell=M+1}^{N} \sum_{k=\ell}^{N}\left(\mu\left(T^{-(k-\ell)} B_{k} \cap B_{\ell}\right)-\mu\left(B_{k}\right) \mu\left(B_{\ell}\right) .\right)
\end{gathered}
\]

Hence if the system is mixing with fast enough rate, there is a hope of verifying its shrinking target properties. This was the logic behind the papers of Philipp, Sullivan, K-Margulis.

So when Kolya visited Rutgers in 1999, I approached him, as an expert on decay of correlations, and suggested to explore this theme together for some other dynamical systems.

For example, starting with symbolic dynamics...

\section*{Sequences and cylinders}

DYNAMICAL BORELCANTELLI

\section*{Kleinbock}
and
Chernov

\section*{Motivation}

Borel-Cantelif sequences

Shrinking
targets
Use of mixing
Topological Markov chains

\section*{Sequences and cylinders}

DYNAMICAL BOREL-
CANTELLI
LEMMAS
Kleinbock and
Chernov
Let \(\mathbf{A}\) be a transitive stochastic matrix and let \(\Sigma=\Sigma_{\mathbf{A}}\) be the topological Markov chain given by A:
\[
\Sigma=\left\{\underline{\omega} \in\{1, \ldots, M\}^{\mathbb{Z}}: \mathbf{A}_{\omega_{i} \omega_{i+1}}=1 \quad \forall i \in \mathbb{Z}\right\}, \sigma:=\text { the left shift. }
\]

\section*{Sequences and cylinders} topological Markov chain given by \(\mathbf{A}\) :
\[
\Sigma=\left\{\underline{\omega} \in\{1, \ldots, M\}^{\mathbb{Z}}: \mathbf{A}_{\omega_{i} \omega_{i+1}}=1 \quad \forall i \in \mathbb{Z}\right\}, \sigma:=\text { the left shift. }
\]

It is a compact metric space, with distance
\[
d\left(\underline{\omega}, \underline{\omega}^{\prime}\right)=\left(\frac{1}{2}\right)^{\max \left\{n: \omega_{i}=\omega_{i}^{\prime}, \forall|i|<n\right\}} .
\]

\section*{Sequences and cylinders} topological Markov chain given by A:
\[
\Sigma=\left\{\underline{\omega} \in\{1, \ldots, M\}^{\mathbb{Z}}: \mathbf{A}_{\omega i \omega_{i+1}}=1 \quad \forall i \in \mathbb{Z}\right\}, \sigma:=\text { the left shift. }
\]

It is a compact metric space, with distance
\[
d\left(\underline{\omega}, \underline{\omega}^{\prime}\right)=\left(\frac{1}{2}\right)^{\max \left\{n: \omega_{i}=\omega_{i}^{\prime}, \forall|i|<n\right\}} .
\]

A cylinder \(C\left(\omega_{\Lambda}\right) \subset \Sigma\) is obtained by fixing symbols of \(\underline{\omega} \in \Sigma\) on a finite interval \(\Lambda=\left[n^{-}, n^{+}\right] \subset \mathbb{Z}\),

\section*{Sequences and cylinders} topological Markov chain given by A:
\[
\Sigma=\left\{\underline{\omega} \in\{1, \ldots, M\}^{\mathbb{Z}}: \mathbf{A}_{\omega i \omega_{i+1}}=1 \quad \forall i \in \mathbb{Z}\right\}, \sigma:=\text { the left shift. }
\]

It is a compact metric space, with distance
\[
d\left(\underline{\omega}, \underline{\omega}^{\prime}\right)=\left(\frac{1}{2}\right)^{\max \left\{n: \omega_{i}=\omega_{i}^{\prime}, \forall|i|<n\right\}} .
\]

A cylinder \(C\left(\omega_{\Lambda}\right) \subset \Sigma\) is obtained by fixing symbols of \(\underline{\omega} \in \Sigma\) on a finite interval \(\Lambda=\left[n^{-}, n^{+}\right] \subset \mathbb{Z}\), i.e. for \(\omega_{\Lambda}=\left\{\omega_{n^{-}}, \ldots, \omega_{n^{+}}\right\} \in\{1, \ldots, M\}^{\wedge}\) we set
\[
C\left(\omega_{\Lambda}\right):=\left\{\underline{\omega}^{\prime} \in \Sigma: \omega_{i}^{\prime}=\omega_{i} \quad \text { for } n^{-} \leq i \leq n^{+}\right\}
\]

Topological Markov chains

\section*{Gibbs measures}

DYNAMICAL BORELCANTELLI

\section*{Kleinbock}
and
Chernov

Motivation
Doucl Cantellt sequences

Shrinking
targets
Use of mixing
Topological Markov chains

\section*{Gibbs measures}

Theorem=Definition. [Bowen] For any Hölder continuous potential \(\psi: \Sigma \mapsto \mathbb{R}\) there is a unique \(\sigma\)-invariant Gibbs measure \(\mu\) on \(\Sigma\) and constants \(a_{1}, a_{2}>0\) and \(P\) (the topological pressure of \(\psi\)) such that for every \(\underline{\omega} \in \Sigma\) and \(N \in \mathbb{N}\),
\[
a_{1} \leq \frac{\mu\left(C\left(\omega_{[1, N]}\right)\right)}{\exp \left(-P N+\sum_{k=1}^{N} \psi\left(\sigma^{k}(\underline{\omega})\right)\right)} \leq a_{2} .
\]

\section*{Gibbs measures}

Theorem=Definition. [Bowen] For any Hölder continuous potential \(\psi: \Sigma \mapsto \mathbb{R}\) there is a unique \(\sigma\)-invariant Gibbs measure \(\mu\) on \(\Sigma\) and constants \(a_{1}, a_{2}>0\) and \(P\) (the topological pressure of \(\psi\)) such that for every \(\underline{\omega} \in \Sigma\) and \(N \in \mathbb{N}\),
\[
a_{1} \leq \frac{\mu\left(C\left(\omega_{[1, N]}\right)\right)}{\exp \left(-P N+\sum_{k=1}^{N} \psi\left(\sigma^{k}(\underline{\omega})\right)\right)} \leq a_{2} .
\]

Definition. We say that two intervals \(\Lambda_{1}\) and \(\Lambda_{2}\) are \(D\)-nested for \(D \geq 0\) if one is in \(D\)-neighborhood of the other.

\section*{Gibbs measures}

Theorem=Definition. [Bowen] For any Hölder continuous potential \(\psi: \Sigma \mapsto \mathbb{R}\) there is a unique \(\sigma\)-invariant Gibbs measure \(\mu\) on \(\Sigma\) and constants \(a_{1}, a_{2}>0\) and \(P\) (the topological pressure of \(\psi\)) such that for every \(\underline{\omega} \in \Sigma\) and \(N \in \mathbb{N}\),
\[
a_{1} \leq \frac{\mu\left(C\left(\omega_{[1, N]}\right)\right)}{\exp \left(-P N+\sum_{k=1}^{N} \psi\left(\sigma^{k}(\underline{\omega})\right)\right)} \leq a_{2} .
\]

Definition. We say that two intervals \(\Lambda_{1}\) and \(\Lambda_{2}\) are \(D\)-nested for \(D \geq 0\) if one is in \(D\)-neighborhood of the other.

Main Theorem [Chernov-K 2001] Let \(\left\{B_{k}\right\}\) be a sequence of cylinders defined on intervals \(\Lambda_{k} \subset \mathbb{Z}\).

\section*{Gibbs measures}

Theorem=Definition. [Bowen] For any Hölder continuous potential \(\psi: \Sigma \mapsto \mathbb{R}\) there is a unique \(\sigma\)-invariant Gibbs measure \(\mu\) on \(\Sigma\) and constants \(a_{1}, a_{2}>0\) and \(P\) (the topological pressure of \(\psi\)) such that for every \(\underline{\omega} \in \Sigma\) and \(N \in \mathbb{N}\),
\[
a_{1} \leq \frac{\mu\left(C\left(\omega_{[1, N]}\right)\right)}{\exp \left(-P N+\sum_{k=1}^{N} \psi\left(\sigma^{k}(\underline{\omega})\right)\right)} \leq a_{2} .
\]

Definition. We say that two intervals \(\Lambda_{1}\) and \(\Lambda_{2}\) are \(D\)-nested for \(D \geq 0\) if one is in \(D\)-neighborhood of the other.

Main Theorem [Chernov-K 2001] Let \(\left\{B_{k}\right\}\) be a sequence of cylinders defined on intervals \(\Lambda_{k} \subset \mathbb{Z}\). Let \(D \geq 0\) be a constant, and let \(\mu\) be a Gibbs measure.

\section*{Gibbs measures}

Theorem=Definition. [Bowen] For any Hölder continuous potential \(\psi: \Sigma \mapsto \mathbb{R}\) there is a unique \(\sigma\)-invariant Gibbs measure \(\mu\) on \(\Sigma\) and constants \(a_{1}, a_{2}>0\) and \(P\) (the topological pressure of \(\psi\)) such that for every \(\underline{\omega} \in \Sigma\) and \(N \in \mathbb{N}\),
\[
a_{1} \leq \frac{\mu\left(C\left(\omega_{[1, N]}\right)\right)}{\exp \left(-P N+\sum_{k=1}^{N} \psi\left(\sigma^{k}(\underline{\omega})\right)\right)} \leq a_{2} .
\]

Definition. We say that two intervals \(\Lambda_{1}\) and \(\Lambda_{2}\) are \(D\)-nested for \(D \geq 0\) if one is in \(D\)-neighborhood of the other.

Main Theorem [Chernov-K 2001] Let \(\left\{B_{k}\right\}\) be a sequence of cylinders defined on intervals \(\Lambda_{k} \subset \mathbb{Z}\). Let \(D \geq 0\) be a constant, and let \(\mu\) be a Gibbs measure. Assume that for all \(k, \ell\) the intervals \(\Lambda_{k}, \Lambda_{\ell}\) are \(D\)-nested.

\section*{Gibbs measures}

Theorem=Definition. [Bowen] For any Hölder continuous potential \(\psi: \Sigma \mapsto \mathbb{R}\) there is a unique \(\sigma\)-invariant Gibbs measure \(\mu\) on \(\Sigma\) and constants \(a_{1}, a_{2}>0\) and \(P\) (the topological pressure of \(\psi\)) such that for every \(\underline{\omega} \in \Sigma\) and \(N \in \mathbb{N}\),
\[
a_{1} \leq \frac{\mu\left(C\left(\omega_{[1, N]}\right)\right)}{\exp \left(-P N+\sum_{k=1}^{N} \psi\left(\sigma^{k}(\underline{\omega})\right)\right)} \leq a_{2} .
\]

Definition. We say that two intervals \(\Lambda_{1}\) and \(\Lambda_{2}\) are \(D\)-nested for \(D \geq 0\) if one is in \(D\)-neighborhood of the other.

Main Theorem [Chernov-K 2001] Let \(\left\{B_{k}\right\}\) be a sequence of cylinders defined on intervals \(\Lambda_{k} \subset \mathbb{Z}\). Let \(D \geq 0\) be a constant, and let \(\mu\) be a Gibbs measure. Assume that for all \(k, \ell\) the intervals \(\Lambda_{k}, \Lambda_{\ell}\) are \(D\)-nested. Then the sequence \(\left\{B_{k}\right\}\) satisfies (1)

\section*{Gibbs measures} \(\psi: \Sigma \mapsto \mathbb{R}\) there is a unique \(\sigma\)-invariant Gibbs measure \(\mu\) on \(\Sigma\) and constants \(a_{1}, a_{2}>0\) and \(P\) (the topological pressure of \(\psi\)) such that for every \(\underline{\omega} \in \Sigma\) and \(N \in \mathbb{N}\),
\[
a_{1} \leq \frac{\mu\left(C\left(\omega_{[1, N]}\right)\right)}{\exp \left(-P N+\sum_{k=1}^{N} \psi\left(\sigma^{k}(\underline{\omega})\right)\right)} \leq a_{2} .
\]

Definition. We say that two intervals \(\Lambda_{1}\) and \(\Lambda_{2}\) are \(D\)-nested for \(D \geq 0\) if one is in \(D\)-neighborhood of the other.

Main Theorem [Chernov-K 2001] Let \(\left\{B_{k}\right\}\) be a sequence of cylinders defined on intervals \(\Lambda_{k} \subset \mathbb{Z}\). Let \(D \geq 0\) be a constant, and let \(\mu\) be a Gibbs measure. Assume that for all \(k, \ell\) the intervals \(\Lambda_{k}, \Lambda_{\ell}\) are \(D\)-nested. Then the sequence \(\left\{B_{k}\right\}\) satisfies (1) and hence, if in addition \(E_{\infty}=\infty\), it is an sBC sequence and (2) holds.

Fact. [Bowen] Let \(B_{1}, B_{2}\) be cylinders defined on intervals in \(\mathbb{Z}\) with gap at least \(L\). Then
\[
\begin{equation*}
\left|\mu\left(B_{1} \cap B_{2}\right)-\mu\left(B_{1}\right) \mu\left(B_{2}\right)\right| \leq c \theta^{L} \mu\left(B_{1}\right) \mu\left(B_{2}\right) \tag{3}
\end{equation*}
\]
where \(c>0\) and \(0<\theta<1\) only depend on the Gibbs measure \(\mu\).

Fact. [Bowen] Let \(B_{1}, B_{2}\) be cylinders defined on intervals in \(\mathbb{Z}\) with gap at least \(L\). Then
\[
\begin{equation*}
\left|\mu\left(B_{1} \cap B_{2}\right)-\mu\left(B_{1}\right) \mu\left(B_{2}\right)\right| \leq c \theta^{L} \mu\left(B_{1}\right) \mu\left(B_{2}\right) \tag{3}
\end{equation*}
\]
where \(c>0\) and \(0<\theta<1\) only depend on the Gibbs measure \(\mu\).

Proof of the Main Theorem.
Kleinbock and
Chernov

Fact. [Bowen] Let \(B_{1}, B_{2}\) be cylinders defined on intervals in \(\mathbb{Z}\) with gap at least \(L\). Then
\[
\begin{equation*}
\left|\mu\left(B_{1} \cap B_{2}\right)-\mu\left(B_{1}\right) \mu\left(B_{2}\right)\right| \leq c \theta^{L} \mu\left(B_{1}\right) \mu\left(B_{2}\right) \tag{3}
\end{equation*}
\]
where \(c>0\) and \(0<\theta<1\) only depend on the Gibbs measure \(\mu\).
Proof of the Main Theorem. If \(B_{1}, B_{2}\) are cylinders defined on \(D\)-nested intervals \(\Lambda_{1}\) and \(\Lambda_{2}\) respectively, then the gap between intervals defining cylinders \(T^{-k}\left(B_{1}\right)\) and \(T^{-\ell}\left(B_{2}\right)\) is at least \(|\ell-k|-D\)

Kleinbock and
Chernov

Fact. [Bowen] Let \(B_{1}, B_{2}\) be cylinders defined on intervals in \(\mathbb{Z}\) with gap at least \(L\). Then
\[
\begin{equation*}
\left|\mu\left(B_{1} \cap B_{2}\right)-\mu\left(B_{1}\right) \mu\left(B_{2}\right)\right| \leq c \theta^{L} \mu\left(B_{1}\right) \mu\left(B_{2}\right) \tag{3}
\end{equation*}
\]
where \(c>0\) and \(0<\theta<1\) only depend on the Gibbs measure \(\mu\).

Proof of the Main Theorem. If \(B_{1}, B_{2}\) are cylinders defined on \(D\)-nested intervals \(\Lambda_{1}\) and \(\Lambda_{2}\) respectively, then the gap between intervals defining cylinders \(T^{-k}\left(B_{1}\right)\) and \(T^{-\ell}\left(B_{2}\right)\) is at least \(|\ell-k|-D \Rightarrow\) the convergence in (1) follows from (3) and the \(D\)-nested assumption.

Kleinbock and
Chernov

Fact. [Bowen] Let \(B_{1}, B_{2}\) be cylinders defined on intervals in \(\mathbb{Z}\) with gap at least \(L\). Then
\[
\begin{equation*}
\left|\mu\left(B_{1} \cap B_{2}\right)-\mu\left(B_{1}\right) \mu\left(B_{2}\right)\right| \leq c \theta^{L} \mu\left(B_{1}\right) \mu\left(B_{2}\right) \tag{3}
\end{equation*}
\]
where \(c>0\) and \(0<\theta<1\) only depend on the Gibbs measure \(\mu\).

Proof of the Main Theorem. If \(B_{1}, B_{2}\) are cylinders defined on \(D\)-nested intervals \(\Lambda_{1}\) and \(\Lambda_{2}\) respectively, then the gap between intervals defining cylinders \(T^{-k}\left(B_{1}\right)\) and \(T^{-\ell}\left(B_{2}\right)\) is at least \(|\ell-k|-D \Rightarrow\) the convergence in (1) follows from (3) and the \(D\)-nested assumption.

Remark. The nesting assumption cannot be easily removed, there are examples of 'almost nested' non-BC sequences constructed in [Chernov-K 2001].

Fact. [Bowen] Let \(B_{1}, B_{2}\) be cylinders defined on intervals in \(\mathbb{Z}\) with gap at least \(L\). Then
\[
\begin{equation*}
\left|\mu\left(B_{1} \cap B_{2}\right)-\mu\left(B_{1}\right) \mu\left(B_{2}\right)\right| \leq c \theta^{L} \mu\left(B_{1}\right) \mu\left(B_{2}\right) \tag{3}
\end{equation*}
\]
where \(c>0\) and \(0<\theta<1\) only depend on the Gibbs measure \(\mu\).

Proof of the Main Theorem. If \(B_{1}, B_{2}\) are cylinders defined on \(D\)-nested intervals \(\Lambda_{1}\) and \(\Lambda_{2}\) respectively, then the gap between intervals defining cylinders \(T^{-k}\left(B_{1}\right)\) and \(T^{-\ell}\left(B_{2}\right)\) is at least \(|\ell-k|-D \Rightarrow\) the convergence in (1) follows from (3) and the \(D\)-nested assumption.

Remark. The nesting assumption cannot be easily removed, there are examples of 'almost nested' non-BC sequences constructed in [Chernov-K 2001].

Application: to Anosov diffeomorphisms via Markov partitions [Chernov-K 2001].

The argument described above has been repeatedly exploited, with some modifications, in many subsequent papers:

DYNAMICAL BORELCANTELLI LEMMAS

Kleinbock and Chernov

The argument described above has been repeatedly exploited, with some modifications, in many subsequent papers:
- [Maucourant 2006] geodesic flows on hyperbolic manifolds

DYNAMICAL BORELCANTELLI LEMMAS

Kleinbock and Chernov

The argument described above has been repeatedly exploited, with some modifications, in many subsequent papers:
- [Maucourant 2006] geodesic flows on hyperbolic manifolds
- [Kim 2007, Gouëzel 2007] non-uniformly expanding interval maps

The argument described above has been repeatedly exploited, with some modifications, in many subsequent papers:
- [Maucourant 2006] geodesic flows on hyperbolic manifolds
- [Kim 2007, Gouëzel 2007] non-uniformly expanding interval maps
- [Kim-Galatolo 2007] generic interval exchanges

The argument described above has been repeatedly exploited, with some modifications, in many subsequent papers:
- [Maucourant 2006] geodesic flows on hyperbolic manifolds
- [Kim 2007, Gouëzel 2007] non-uniformly expanding interval maps
- [Kim-Galatolo 2007] generic interval exchanges
- [Gorodnik-Shah 2010] flows on homogeneous spaces (generalizing Maucourant and deriving applications to number theory)

The argument described above has been repeatedly exploited, with some modifications, in many subsequent papers:
- [Maucourant 2006] geodesic flows on hyperbolic manifolds
- [Kim 2007, Gouëzel 2007] non-uniformly expanding interval maps
- [Kim-Galatolo 2007] generic interval exchanges
- [Gorodnik-Shah 2010] flows on homogeneous spaces (generalizing Maucourant and deriving applications to number theory)
- [Gupta-Nicol-Ott 2010, Haydn-Nicol-Persson-Vaienti 2011] non-uniformly hyperbolic dynamical systems

The argument described above has been repeatedly exploited, with some modifications, in many subsequent papers:
- [Maucourant 2006] geodesic flows on hyperbolic manifolds
- [Kim 2007, Gouëzel 2007] non-uniformly expanding interval maps
- [Kim-Galatolo 2007] generic interval exchanges
- [Gorodnik-Shah 2010] flows on homogeneous spaces (generalizing Maucourant and deriving applications to number theory)
- [Gupta-Nicol-Ott 2010, Haydn-Nicol-Persson-Vaienti 2011] non-uniformly hyperbolic dynamical systems
- [Chaika-Constantine 2012] rotations and interval exchanges (the first theorem of that kind is due to [Kurzweil 1955])

The argument described above has been repeatedly exploited, with some modifications, in many subsequent papers:
- [Maucourant 2006] geodesic flows on hyperbolic manifolds
- [Kim 2007, Gouëzel 2007] non-uniformly expanding interval maps
- [Kim-Galatolo 2007] generic interval exchanges
- [Gorodnik-Shah 2010] flows on homogeneous spaces (generalizing Maucourant and deriving applications to number theory)
- [Gupta-Nicol-Ott 2010, Haydn-Nicol-Persson-Vaienti 2011] non-uniformly hyperbolic dynamical systems
- [Chaika-Constantine 2012] rotations and interval exchanges (the first theorem of that kind is due to [Kurzweil 1955])
- [Dolgopyat-Fayad-Vinogradov 201?] total translations, using equidistribution on homogeneous spaces

The argument described above has been repeatedly exploited, with some modifications, in many subsequent papers:
- [Maucourant 2006] geodesic flows on hyperbolic manifolds
- [Kim 2007, Gouëzel 2007] non-uniformly expanding interval maps
- [Kim-Galatolo 2007] generic interval exchanges
- [Gorodnik-Shah 2010] flows on homogeneous spaces (generalizing Maucourant and deriving applications to number theory)
- [Gupta-Nicol-Ott 2010, Haydn-Nicol-Persson-Vaienti 2011] non-uniformly hyperbolic dynamical systems
- [Chaika-Constantine 2012] rotations and interval exchanges (the first theorem of that kind is due to [Kurzweil 1955])
- [Dolgopyat-Fayad-Vinogradov 201?] total translations, using equidistribution on homogeneous spaces
- and many many more...

The argument described above has been repeatedly exploited, with some modifications, in many subsequent papers:
- [Maucourant 2006] geodesic flows on hyperbolic manifolds
- [Kim 2007, Gouëzel 2007] non-uniformly expanding interval maps
- [Kim-Galatolo 2007] generic interval exchanges
- [Gorodnik-Shah 2010] flows on homogeneous spaces (generalizing Maucourant and deriving applications to number theory)
- [Gupta-Nicol-Ott 2010, Haydn-Nicol-Persson-Vaienti 2011] non-uniformly hyperbolic dynamical systems
- [Chaika-Constantine 2012] rotations and interval exchanges (the first theorem of that kind is due to [Kurzweil 1955])
- [Dolgopyat-Fayad-Vinogradov 201?] total translations, using equidistribution on homogeneous spaces
- and many many more...```

