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We consider a strictly convex billiard table with C2 boundary.
Each time the billiard ball hits the boundary its reflection angle
has a small random perturbation.

The perturbation distribution corresponds to the physical sit-
uation where the scale of the surface irregularities is smaller than
but comparable to the diameter of the reflected object.

We prove that for a large class of such perturbations the result-
ing Markov chain is uniformly ergodic.

Stochastic properties proved via topological dynamics methods

I would like to thank Ya. G. Sinai for suggesting this problem.
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Billiards with stochastic perturbation are very natu-
ral models motivated by microscopic kinetic problems,
theoretical computer science, etc. Have been receiving
increased attention from deterministic and stochastic
dynamics communities in the last decade.

In most of the studied cases, the outgoing angle is ei-
ther uniformly distributed, or satisfying other reflection
laws that are physically relevant if the micro-structure
and irregularities of the boundaries have a length-scale
larger than the diameter of the ball.
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We focus on the case of stochastic perturbations cor-
responding to the physical situation where the scale of
the surface irregularities is smaller than but comparable
to the diameter of the reflected object

Deterministic billiards on sufficiently smooth strictly
convex tables are non-ergodic

In contrast to the deterministic situation, for a cer-
tain class of stochastic perturbations of a reflection law,
the associated Markov process is uniformly ergodic, and
any probability measure converges exponentially fast to
a unique invariant probability measure.
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We note that this is not true in general: there are
examples of stochastic perturbations under which the
resulting system is not ergodic.

Our result holds for billiard tables which are strictly
convex, with C2 boundary, including the possibility of
isolated points of null curvature.
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Informal description of the mathematical setup.

Given a prescribed family of independent random
variables {Yθ}θ∈[0,π], the dynamics obeys a stochastic
rule. If the outgoing angle after a deterministic colli-
sion would have been θ, it is taken as θ + Yθ instead.

The family {Yθ}θ∈[0,π] is chosen in such a way that
typically the influence of Yθ is negligible compared to
θ. However, it becomes substantial when the incidence
angle gets too small. The latter property reflects an
increased sensitivity to surface rugosity.
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Figure 1: Round particle reflecting on a rough surface; equivalent microscopic
model of point particle reflecting on a smooth surface; macroscopic model.
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Models and result

Description of deterministic billiard in D.
We assume that D is a connected domain in R

2,

strictly convex with C2 boundary.

Notice that isolated points with null curvature are
allowed.

The billiard in D is the dynamical system describing
the free motion of a point mass inside D with elastic re-
flections at its boundary Γ. Let n(q) be the unit normal
to the curve Γ at the point q pointing towards the inte-
rior of D. The phase space of such a dynamical system
is {(q, v) : q ∈ Γ, |v| = 1, 〈v, n(q)〉 > 0}.
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The image of a point (q0, v0) by the deterministic
billiard map T is denoted by

T (q0, v0) = (q1, v1)

We take the set of coordinates (s, θ),
s: arc-length parameter along Γ and
θ ∈ [0, π]: angle between the oriented tangent line to
the boundary at q and v.

The phase space is given by the cylinder

M = {(s, θ) : 0 6 s < |Γ|, 0 6 θ 6 π}.

For x = (s, θ) ∈ M , we write s(x) = s, θ(x) = θ, and
also q(x) for the corresponding point in Γ.
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T is a diffeomorphism defined on compact setM with
fixed points at ∂M = {(s, θ) : θ = 0 or π}.

Moreover, T is a twist diffeomorphism: the image of
any vertical line (s = constant) is a smooth curve with
slope positive and bounded away from infinity.

IfD is strictly convex with sufficiently smooth bound-
ary, by KAM theory there exist invariant curves of the
billiard map as close as we want to the boundary ∂M

Therefore, if the initial angle is small it remains small
along the whole trajectory. This regularity can be bro-
ken using arbitrarily small random perturbations.
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We consider the system with random perturbations
that act on the outgoing angle, independently of the
position, by adding a random variable to θ.

Fix 0 < ǫ < π
2 . For θ away from 0 and π, we take the

probability density of the outgoing angle as a constant
on the interval [θ−ǫ, θ+ǫ] (the correct law derived from
Figure 1 would not have constant density, but this is
irrelevant for the qualitative behavior of the model).

The particular choice of perturbation becomes more
delicate when the collision angle is close to the extremes.
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Three examples to illustrate possible behaviors.
1. For every point x = (s, θ) ∈M , define

θǫ := min{max(θ, ǫ), π − ǫ}; consider the measure Qǫ
x

on M :

Qǫ
x(A) =

∫ θǫ+ǫ

θǫ−ǫ

IA(s, u)
1

2ǫ
du.

In other words, the random outgoing angle is distributed
uniformly on

[θǫ − ǫ, θǫ + ǫ].

2. Outgoing angle uniformly distributed on

[max{θ − ǫ, 0},min{θ + ǫ, π}]

0-10



3. Outgoing angle uniformly distributed on [0, 2θ]
for θ < ǫ, and defined analogously for θ > π − ǫ.

In Examples 1 and 2, the outgoing angle is uniformly
distributed over an interval whose length is at least ǫ
for θ < ǫ.

Example 1 replaces θ by a uniform on [0, 2ǫ], whereas

Example 2 replaces θ by a uniform on [0, θ + ǫ].
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Example 3, on the other hand, is different in nature.

For a trajectory where the outgoing angle would be
almost tangent to the boundary Γ, the replacement by a
uniform on [0, 2θ] keeps it very close to being tangent.
We find the first two examples natural to justify for
a physical situation of a rigid sphere hitting a rough
surface, as shown in Figure 1.

We concentrate on Example 1, bearing in mind that
all the arguments translate seamlessly to Example 2 or
other similar cases.
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P: set probability measures on B; total variational
distance on P: ‖µ− ν‖ = supA∈B |µ(A) − ν(A)|.

Stochastic perturbation of T given by
transition kernel Pǫ(x,A) = Qǫ

Tx(A), x ∈M, A ∈ B.

Pǫ(., A) is a measurable function for every A ∈ B,
and Pǫ(x, .) is a measure on B for every x ∈M .

Def. Push-forward operator µ 7→ µPǫ for µ ∈ P:

µPǫ(A) =

∫

M

µ(dx)Pǫ(x,A);

Def. µ ∈ P is invariant for Pǫ if µPǫ = µ.
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Theorem 1. Suppose that D is strictly convex and its

boundary Γ is C2. For each 0 < ǫ < π
2 , there exists a

unique invariant measure νǫ for Pǫ, and moreover there

exists γ > 0 such that
∥∥µP n

ǫ − νǫ

∥∥ 6 e−γn for all µ ∈ P and n ∈ N.

Theorem 1 remains valid, with essentially the same proof, for a
much broader class of distributions. What is important is that the
probability density of the outgoing angle is bounded from below on
some interval around θ whose length is also bounded from below.

Stochastic dynamics constructed using the distribution of Ex-
ample 3 is not only non-ergodic, but it gets quickly absorbed by a
random point at the boundary ∂M .
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Deterministic billiards in convex tables

T preserves prob. measure dν = 1
2|Γ| sin θ ds dθ.

Lemma 2. If T (x) = (s1(x), θ1(x)), x = (s, θ), then(
∂s1

∂θ

)−1
can be continuously extended to the boundary of

M . In particular, ∂s1

∂θ
is bounded away from zero.

T being a twist map holds if D is convex with C1

boundary. In this case the map T is an homeomorphism
in intM that can be extended defining Tx = x for every
x ∈ ∂M . x 7→ q(T (x)) is not continuous in x if q(x)
is in the interior of a segment of the boundary, but
x 7→ θ(T (x)) is nonetheless continuous.
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For any 0 < a < π
2 , we define the cylinder Ma =

[0, |Γ|) × [a, π − a].

Lemma 3. Suppose that D is convex with C1 boundary.

Given ǫ > 0, there exist 0 < c2 < c1 < ǫ satisfying the

following conditions: Mǫ ⊂ T (Mc1
), Mc1

⊂ T 2(Mc2
)

and T 2(Mc1
) ⊂Mc2

.
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For the deterministic billiard on a sufficiently smooth
table, Lazutkin regularity result:

If D is convex with smooth boundary and curvature
bounded from below then there exists M ′ ⊂ M with
positive measure, foliated by invariant curves; M ′ ac-
cumulates on the horizontal boundaries of M , the map
T restricted to each such curve is topologically equiv-
alent to an irrational rotation; close to the boundary
(θ = 0 or π in the phase space) there is a set of positive
measure with regular behavior.

Theorem 1 shows that this regularity can be broken
by an arbitrarily small stochastic perturbation.
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Examples of convex regions with no invariant curves
near the boundary. Have trajectories with an infi-
nite number of bounces in finite time. Either violating
the condition on the curvature or the differentiability of
the boundary.

Halpern: curve that has nowhere vanishing curvature
but unbounded third derivative, proved that there are
trajectories baring this pathological behavior.

Mather: convex billiard with C2 boundary violating
the condition of non-null curvature, it has trajectories
coming arbitrarily close to being positively tangent to
the boundary
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Markov chains and their densities

Recall that the stochastic perturbation of the map T
is given by the transition kernel

Pǫ(x,A) = Qǫ
Tx(A), x ∈M, A ∈ B.

Let P n
ǫ denote the n-th power of the kernel

P n+1
ǫ (x,A) =

∫

M

Pǫ(x, dy)P
n
ǫ (y,A).

P n
ǫ (x, .) is a probability measure on B for every
x ∈M . Moreover, as operators on P they satisfy
µP n

ǫ = (µP n−1
ǫ )Pǫ, and defining P 0

ǫ (x,A) = IA(x), the
set (P n

ǫ )n∈N0
forms a semi-group.
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Proposition 4. For the stochastic billiard map there

exist density functions pn
ǫ (x, y) such that, for every

x = (s, θ) ∈M , n > 2, and A ∈ B,

P n
ǫ (x,A) =

∫

A

pn
ǫ (x, y)dy.

Proof. If A = [s̃, ŝ] × [θ̃, θ̂], Tx = (s1, θ1), z = (s1, θ
′),

T z = (s′1, θ
′
1) then, for z ∈ T̂ x(s′ = s1), we have

P 2
ǫ (x,A) =

1

4ǫ2

∫

[θǫ
1
−ǫ,θǫ

1
+ǫ]

dθ′
∫

[−ǫ,ǫ]

IA(s′1, θ
′ǫ
1 + u)du.

Changing variables dθ′ = ∂θ′

∂s′
1

ds′1, we obtain the desired
density. The general case is analogous.
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A Markov chain is said to satisfy Döblin’s condition

if there exists a probability measure λ, m > 0 and
δ1 < 1, δ2 > 0 such that, whenever λ(A) > δ1, then
Pm

ǫ (x,A) > δ2, for all x ∈M .

Theorem 1 is a consequence of the following result.

Proposition 5. Suppose that D is strictly convex and

its boundary Γ is C2. Then for every 0 < ǫ < π/2, there

exist b > 0 and N > 0 such that

pN
ǫ (x, y) > b, ∀x, y ∈M.
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Proof of Theorem 1. Proposition 5 implies that the chain
is ψ-irreducible and satisfies Döblin’s condition; then it
is uniformly ergodic, The result then follows from gen-
eral results included in the book by Meyn and Tweedie:
Markov Chains and Stochastic Stability.

Proof of Döblin’s condition.

Before proving Proposition 5 and Theorem 1, we need
a few additional technical steps, summarized in the next
definitions and two propositions.
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We say that a sequence ξ = (ξk)k∈[0,...,l], ξk = (sk, θk) ∈
M is an ǫ-angular perturbed orbit of length l if, for all
0 6 k < l, s(T (ξk)) = sk+1 and |θ(T (ξk)) − θk+1| < ǫ.

Let Oǫ,l denote the set of ǫ-angular perturbed orbits
of length l.

For n > 0 define

T̂ n
ǫ (x) := {y : ∃ ξ ∈ Oǫ,n, such that ξ0 = x, ξn = y}.

Starting at a point x, T̂ n
ǫ (x) is the set of points that

may be reached in n steps by following the deterministic
billiard but allowing for perturbations smaller than ǫ in
the reflection angle.
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Proposition 6. If 0 < l < n, n > 3, y ∈ T̂ n
ǫ (x) and

there exists z in the interior of M such that z ∈ T̂ l
ǫ(x)

and y ∈ T̂ n−l
ǫ (z), then pn

ǫ is continuous at (x, y) and

pn
ǫ (x, y) > 0.

Proof. From the above definition we have that T̂ n
ǫ (x) =⋃

z∈T̂ n−1
ǫ (x) T̂ǫ(z), and if y ∈ T̂ 2

ǫ (x) and y do not belong
to the boundary of M , then y belongs to the interior of
the support of p2

ǫ(x, .) and p2
ǫ is continuous at (x, y).
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Proposition 7. Suppose that D is convex with C1 bound-

ary given by the union a finite number of C2 arcs and

line segments. For every ǫ > 0, there exists N ∈ N such

that, for all x, y ∈ M , there exists ξ ∈ Oǫ,N , such that

ξ0 = x and ξN = y.

Proof. We split the proof in two steps.
First we show that it is possible to move between

points in a given small neighborhood.
Finally we use this fact to cover the whole phase

space.
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Step 1. By definition, if θ1 = θ(Tx) ∈ [ǫ, π − ǫ], or
equiv. Tx ∈Mǫ, then T̂ǫx = {s1}× (θ1 − ǫ, θ1 + ǫ)∩M ,
and T̂ 2

ǫ x is a distorted rectangle.

If x /∈ ∂M , then T 2x lies in the interior of T̂ 2
ǫ x. Now,

take c2(ǫ) > 0, fixed by the modulus of continuity of T
as in Lemma 3. If δ < c2 is sufficiently small, then for all
x in Mc2

, both T 2(B2δ(x)) and B2δ(T
2x) are contained

in T̂ 2
ǫ x.

Consider a set U ⊂ Mc1
, ν(U) > 0, diameter smaller

than δ, and let x1 ∈ U. As a consequence of the Poincaré
Recurrence Theorem and B-Kh Ergodic Theorem: there
exists z in U and n

U
6 (ν(U))−1 with T n

U (z) in U .
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By choice of δ, we have that z2 = T 2(z) ∈ T̂ 2
ǫ (x1).

From this we have that T nU−4(z2) = T nU−2(z) belongs
to T̂ nU−2

ǫ (x1).

Note that, by the choice of c2, since T nU (z) belongs
to Mc1

, then T nU−2z belongs to Mc2
and so, again by the

choice of δ, the ball of radius 2δ and center T 2T nU−2(z)
is contained T̂ 2

ǫ (T nU−2z) and so U ⊂ T̂ 2
ǫ (T nU−2z) ⊂

T̂ nU
ǫ x1.

Therefore our dynamics moves any point of U to any
other point in U by the step nU 6 (ν(U))−1.
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Step 2. We partition the cylinder Mc1
into k rectan-

gles R1, . . . , Rk based on a rectangular grid of size less
then δ/2, and consider the collection Q1, . . . , Ql of rect-
angles of diameter less then δ, made of two adjacent
rectangles Ri, Rj.

Let N0 be such that N−1
0 is smaller that the minimum

of ν(Qj), 1 6 j 6 l. Then N0 only depends on ǫ, and
for each Qj, there exists nQj

< N0 such that, for any

two points x, y in Qj, y belongs to T̂
nQj

ǫ (x). Let N1 be
the least common multiple of {1, . . . , N0 − 1}.
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Repeatedly applying same reasoning, any two points
in the same rectangle can be joined by a random tra-
jectory at step N1: T̂

N1

ǫ x contains Qj for each x ∈ Qj.

Consider two points x0, y in Mc1
. There exists a se-

quence of adjacent rectangles R0, R1, . . . , Rm, m < k,
such that x0 ∈ R0 and y ∈ Rm. Choose xi ∈ Ri, 1 6

i 6 m− 1 and let xm = y.

By construction, for any 0 6 i 6 m−1 there exists ji
such that both xi and xi+1 belong to Qji

. Thus xi+1 ∈

T̂N1

ǫ (xi).
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By induction, xm ∈ T̂mN1

ǫ (x0). On the other hand,
as a consequence of the recurrence of Rm by T̂ǫ, xm ∈

T̂N1

ǫ (xm) and so we have that xm ∈ T̂ nN1

ǫ (x0) for any
n > m.

Since x0 and y were arbitrary and m < k, for any
x in Mc1

, T̂ kN1

ǫ (x) contains Mc1
. For any x in M, T̂ǫx

intersects Mǫ ⊂Mc1
, and so T̂ kN1+1

ǫ x contains Mc1
.

If θ(Tx) is smaller than ǫ (greater than π − ǫ) then
T̂ǫx contains the segment (s(Tx)× [0, ǫ]) or the segment
(s(Tx)×[π−ǫ, π]). Then, sinceMǫ ⊂ T (Mc1

), T̂ǫ(Mc1
) =

M we have that T̂ kN1+2
ǫ x = M for any x ∈M .
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Proof of Proposition 5. By Proposition 7, there exists
N > 2 such that, for all x, y ∈ M, y ∈ T̂N

ǫ (x). In par-
ticular, by Proposition 6, pN

ǫ is continuous and strictly
positive in (x, y). The result follows by compactness.
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